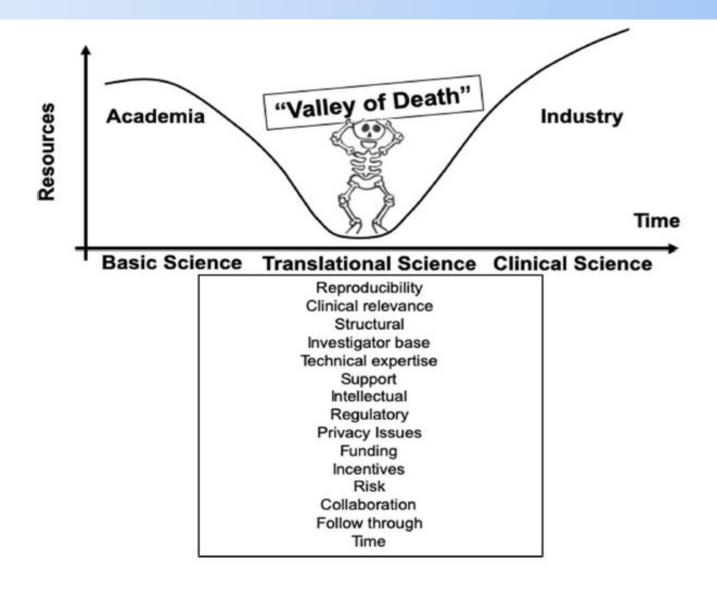
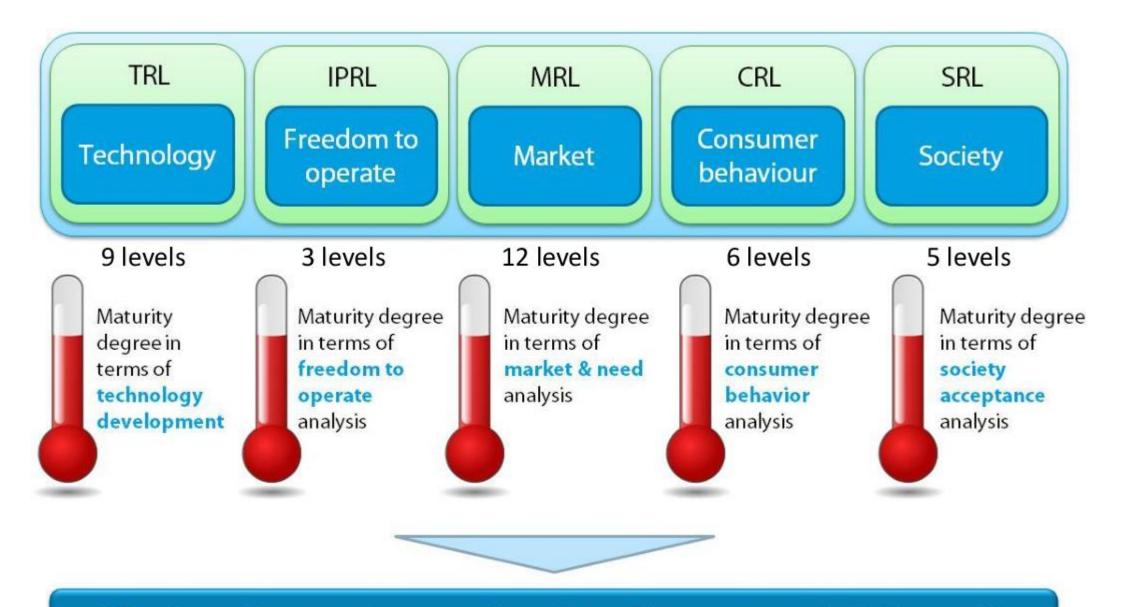

ความสำคัญ

เกี่ยวกับการประเมินระดับความพร้อมของเทคโนโลยี (Technology Readiness Level: TRL) และการประยุกต์ใช้ TRL ในประเทศและต่างประเทศ

ดร.วรางคณา ปัญญากรวงศ์

นักวิจัยนโยบาย ฝ่ายบริหารกลยุทธ์และนโยบายองค์กร สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ


Crossing the Valley of Death



Source: Hugh ThaweesakKoanantakool, Ph.D.

Adapted from source: Osawa and Miyazaki, 2006

The Valley of Death in Biomedical Research

KIC InnoEnergy Innovation Readiness Level (IRL tool®)

Technology Readiness Level (TRL): 9 **levels**, ranging from the *Fundamental research* up to the *Market certification and sales authorization*

IP Readiness Level (IPRL): 3 levels, which range from the basic research based on IP Mapping up to the detailed and complete freedom to operate in a global framework.

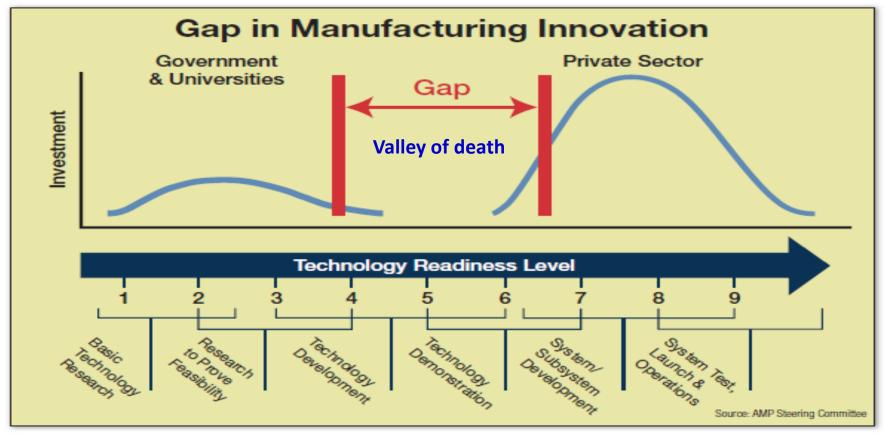
Market Readiness Level (MRL): 10 levels, which range from the identification of an unsatisfied need up to the Business Model definition.

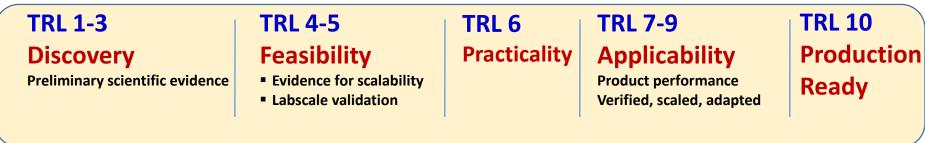
Consumer Readiness Level (CRL): it identifies the level of knowledge about the consumer and to what extent it affects the product/service. This dimension is made up of 6 levels, which range from the consumer identification and needs up to the consumer co-development

Society Readiness Level (SRL): it identifies the level of knowledge about the stakeholders' interests and concerns and to what extent the product/service impacts on society. This dimension is made up of 5 levels, which range from the recognition of the stakeholders up to the involvement of the stakeholders.

	Definition	Limitations
Innovation Readiness Level	Composite measure built on various scales TRL,	Difficult to implement in practice in
tool (IRL tool [™])	IPRL, MRL, CRL, SRL (see box 4).	most innovation projects, being an
First identified source : Developed		advanced tool.
by EIT Kic Inno-energy		
Innovation Readiness Level	IRL is designed to better shape technologies	The project has reformulated the
(IRL)	transfer programme. University of Liege has	Steps of TRL scale to better shape
First identified source : university of	launched a Prove of concept programme to bring	with innovation policies and
liege in the context of the H2020	project from IRL 4 (prototype approved in labs.) to	instruments. A case study on
project PROGRESSTT	IRL5 (prototype approved in real environment). In	assessing IP and technology at the
	contrast to the IRL tool developed by the EIT KIC	university of Liege shows the
	Inno-energy, the intellectual property is considered	relevance of such tool when
	apart.	designing a support measure.
Manufacturing Readiness Level	MRL measures the maturity of manufacturing	Very specific to the manufacturing
(MRL)	readiness, similar to how technology readiness	sector
First identified source : US	levels (TRL). It can be used in general industry	
Department of Defence	assessments or for more specific application in	
http://www.dodmrl.com/	assessing capabilities of possible suppliers	
Technology Readiness Index	Measure to assess people's general beliefs about	Measure mainly used for digital
(TRI)	technology. It is comprised of 4 dimensions:	technologies and products
First identified source : Parasurama	optimism, innovativeness, discomfort and	
A., 2000	insecurity.	
Technology Acceptance model	TAM predicts the people's technology-adopting	Measure focussed on
(TAM)	behaviour at work environments.	individual 'user' of IT
First identified source : Davis and	Developed in the 80s, it assesses the acceptance of	
Bagozzi, 1989	IT by asking individuals about their future intentions	
	to use the IT.	

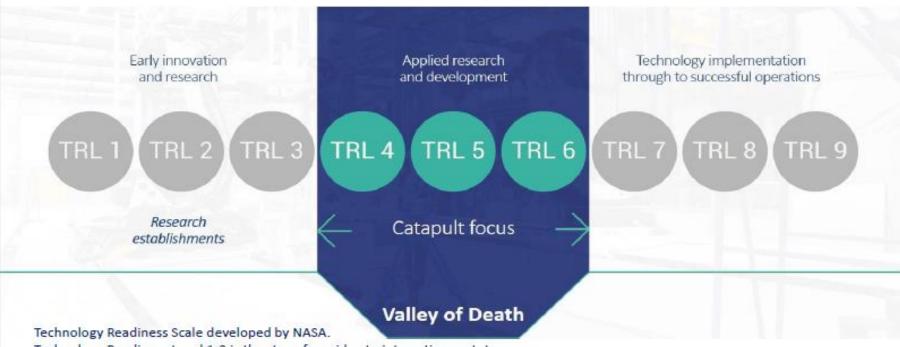
	Definition	Limitations
Societal Readiness Level (SRL) Horizon2020-SWAFS (Science with and for Society) project "NewHoRRIzon" https://newhorrizon.eu/	SRL identifies the level of knowledge about the stakeholder's interests and concerns and to what extent affects the product/service to the society. SRL includes adequate legislation and governance arrangements to mitigate adverse effects; and the existence of mechanisms to ensure involvement of citizens and societal actors in the production and assessment of new knowledge and technologies.	The limitations of the use of TRL considering that technological readiness levels are actually always sociotechnical, i.e. include economic and social (and sometimes political) readiness)
Human Readiness Level (HRL) First identified source : US Naval Postgraduate School (NPS)	HRL Measures the likelihood of usable, fit-for- purpose systems being delivered to the end-users is getting every closer	First developed for military purposes, no other use identified
Societal Readiness Level (SRL) First identified source : Innovation Fund Denmark	SRL assess the level of societal adaptation of, for instance, a particular social project, a technology, a product, a process, an intervention, or an innovation (social or technical) to be integrated into society.	No other use of SRL scale identified
System readiness level (SRL) First identified source : Sauser et al,2002	SRL incorporates the current TRL scale, and introduce the concept of an integration readiness level (IRL) to dynamically calculate a SRL index	Technology oriented and potentially difficult to use for policy purpose
Market readiness level (MRL)(2)	MRL(2) measures the need of a technology in the market from the identification of an unsatisfied need to the full commercialization and scaling	MRL (2) is related to TAM and TRI. MRL(2) should be used ex-ante the implementation of R&I policies. MRL should have been taken into account upstream when S3 specialisation is decided through the entrepreneurial discovery process.
Demand Readiness Level (DRL) First identified source : Paun F., 2011	DRL addresses the Market Pull approach while doing technology transfer and technological innovation	DRL is similar to MRL. DRL and MRL should be considered at broader level than region itself. European and international demand/market should be considered.


Why use TRL?


- A Technology Readiness Level (TRL), describes the maturity of a given technology relative to its development cycle.
- At its most basic, it is defined at a given point in time by what has been done and under what conditions.
- TRL is used as
 - » a program management tool
 - a common understanding of science and technology exit criteria
 - a consistent comparison of maturity between different types of technology
 - a communication tool between technologists and managers

ที่มา: Ikeda, M., Kurata, M, Minato, K., et al. **Technology Readiness Levels for Partitioning and Transmutation of Minor Actinides in Japan, San** Francisco, USA, 1-4 November 2010.

James Bilbro ., et al. Status of the development of an International Standards Organization (ISO) definition of the Technology Readiness Levels (TRL) and their criteria of assessment. 2010.


TRL and Valley of death

Market failure: Bridging the Valley of Death

Technology Readiness Level 1-3 is the stage from idea to interesting prototype.

This often takes place in a research institution, university or laboratory.

TRL 4-6 is the translational space which moves the prototype to proof of commercial viability

TRL 7-9 is where private investment turns the proven concept into industrial scale manufacturing activity.

The translational activity is the risky, expensive stage, often involving significant investments without any guarantee of success.

It is estimated that 80% of innovations fail in this so-called Valley of Death.

Other countries recognise this market failure and have put in place support mechanisms.

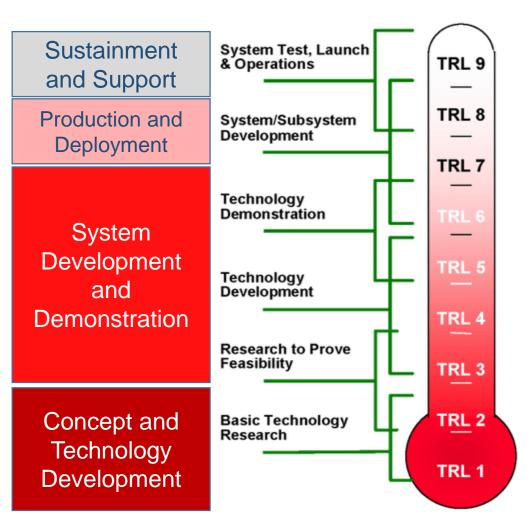
The NCC a member of the UKs High Value Manufacturing catapult fit in the translational space.

TRL และการประยุกต์ใช้ในองค์กร/หน่วยงานต่างประเทศ

การบ่งชี้ระดับความพร้อมและเสถียรภาพ ของเทคโนโลยีตามบริบทการใช้งาน ตั้งแต่ เป ็นวัตถุดิบ องค์ประกอบสำคัญ อุปกรณ์ และกระบวนการทำงานทั้งระบบก่อนที่จะมี การบ ูรณาการเทคโนโลยีเป ็นระบบ ค.ศ. 1974

TRL ถูกคิดคันครั้งแรก โดย Mr. Stan Sadin องค์การนาซ่า เพื่อใช้ เป็นเครื่องมือประเมินระดับความพร้อมของการพัฒนาเทคโนโลยีใหม่ ในโปรแกรมการบิน โดยในช่วงแรกมี 7 ระดับ

ค.ศ. 1990


องค์การนาซ่า ได้ขยายเพิ่มเติมคำจำกัดความของ TRL เป็น 9 ระดับ และ เป็นครั้งแรกที่มีการประยุกต์ใช้ TRL ทั้งภายในและภายนอกองค์การนาซ่า

ค.ศ. 1995

Mr. John C. Mankins ได้มีตีพิมพ์เผยแพร่คำจำกัดความและคำอธิบาย รายละเอียดของ TRL แต่ละระดับอย่างเป็นทางการใน white paper

NASA Definitions of each TRL Level

Actual system "flight proven" through successful mission operations

Actual system completed and "flight qualified" through test and demonstration (Ground or Flight)

System prototype demonstration in a space environment

System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)

Component and/or breadboard validation in relevant environment

Component and/or breadboard validation in laboratory environment

Analytical and experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

Technology Readiness Level (TRL) Process

NASA's quest to make jet engines quieter led to the development of chevrons, which moved relatively quickly through the TRL process to be deployed into the commercial marketplace.

TRL 8-9 (2005-now)

- Certification by the Federal Aviation Administration
- Deployed into market

TRL 7 (2001-2005)

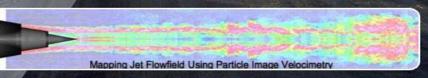
- · Validation of concept in flight
- Flight tests, final design

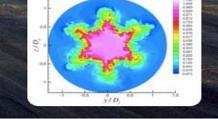
TRL 6 (1998-2000)

- Full scale tests for acoustics and aerodynamics
- Static engine tests

TRL 4-5 (1995-1997)

- · Model tests for acoustics and aerodynamics
- Sub-scale model tests


TRL 3 (Early 1990s)


- Applications to small nozzles and airfoils
- · Lab tests, concept on paper

- Fundamental investigations of air-mixing devices (tabs, chevrons, etc.)
- No specific application, basic research in fluid physics

ตัวอย่างการประยุกต์ใช้ TRL ใน หน่วยงานวิจัยต่างประเทศ

· Goverment of canada the build in canada Innovation Program (BCIP)

National aerospace center

cente national d' **Etudes spatiales**

European Space European Association of Research and Technology Agency (ESA) Research and Organizations

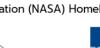
America

United kingdom

Germany France

Europe

Australia


Thailand

Malaysia

Japán Aerospace **Exploration Agency**

Department of National Aeronautics and Space Administration (NASA) Homeland Security (DHS)

ldaho National Laboratory

United States Department of Defense (DOD)

North Atlantic Treaty Organization

Department of Energy (DOE)

Natural Environment Research Council

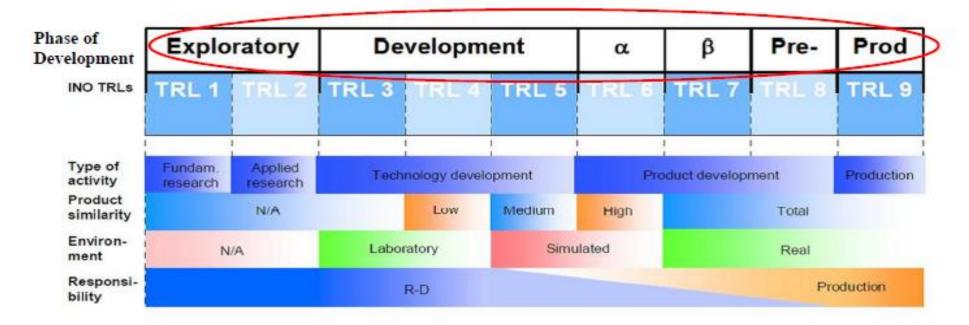
Malaysian Investment Development Authority (MIDA)

Australian Government Australian Renewable

Energy Agency

INO TRL Definition

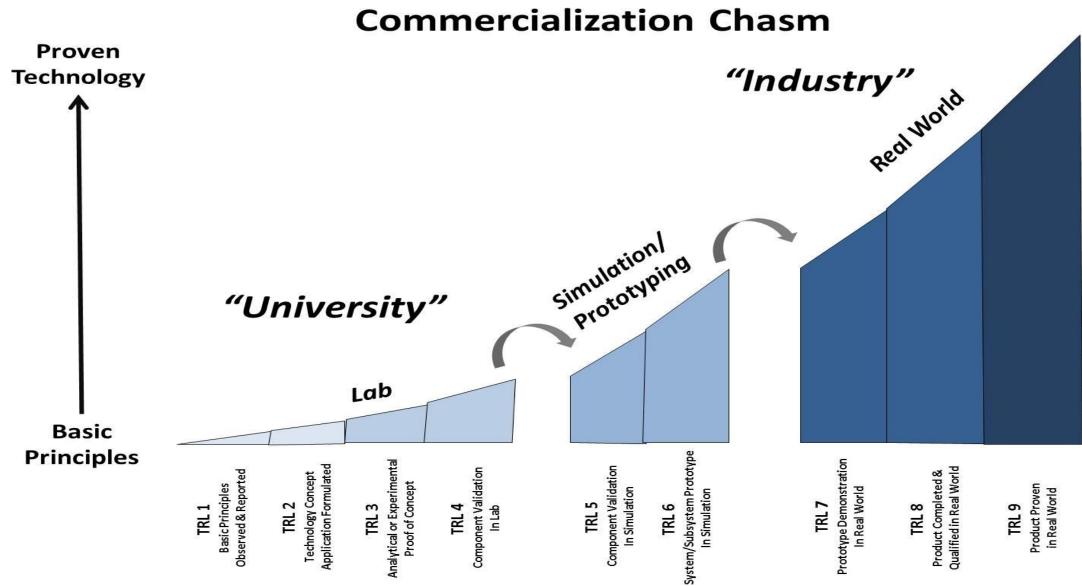
Phase of Development	• •	• •
Employee	TRL 1	The scientific research phase
Exploratory	TRL 2	The applied research phase
	TRL 3	Analytical and experimental proof-of-concept for the critical functions of the technology
Development	TRL 4	The component and /or breadboard validation in done in a laboratory environment
	TRL 5	A higher fidelity breadboard is validated in the application specific or relevant product implementation environment
α Test	TRL 6	A representative model or prototype of the system (alpha prototype) is tested in the environment of the application
β Test	TRL 7	Demonstration of functionality of an actual prototype (beta system) in the intended operational environment
Pre-production	TRL 8	Pre-production phase
Production	TRL 9	Production phase


Source: Lewis Chen, New Venture Business Director CIS, ITRI, 2014

Canada INO TRL Definition

•TRL1~9 : Exploratory/Development/α test/β test/Pre-Production/Product

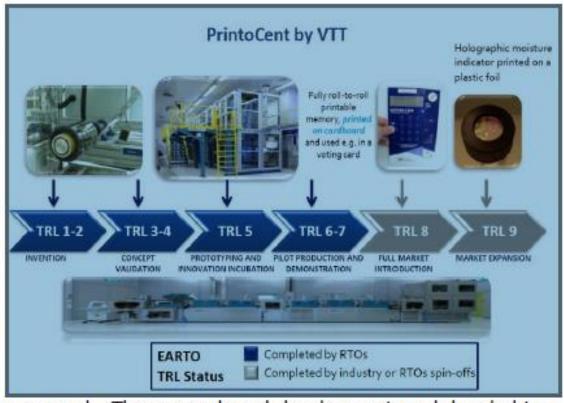
Figure 1 INO TRL description.


INO :Institut national d'optique

Source: Lewis Chen, New Venture Business Director CIS, ITRI, 2014

工業技術研究院 Industrial Technology Strengthen the Technology Innovation Management

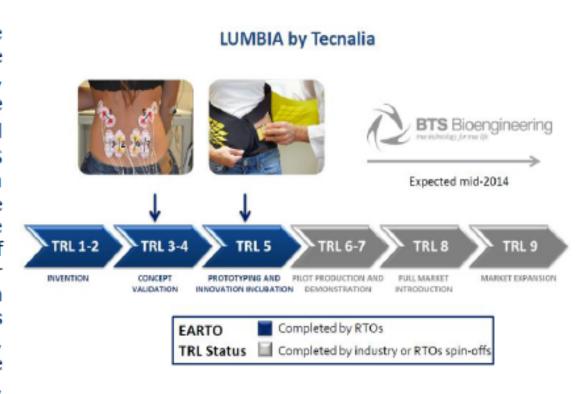
Phase of Developmen	Exploratory De		evelopme	nt	α test	β test	Pre- production	Production	
	TRL 1	TRL 2	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 9
	Basic Research	Applied Study	Techno	ology Develo	pment	Produ	ct/System D	evelopment	Mass Production
Degree to Commodification	n	N/A		Low	Medium	High		Overall	
Verification Environment	N	N/A		ratory nment	Analog Environment			Actual Environment	
Task	R&D							Application	Promotion
Plan Management (Risk Mgmt included				inant		Pre	cise Manag	ement(classical P	M)
Partner	Academia-research Cooperation Industry-research Coopera				rch Cooperation				
Patent Deployment	Basic-innovative Patent Deployment			Product/System Applied Patent Deployment & Manufacturing Patent Deploymen			ent Deployment		
Resource	Advanced Te Owned Fur	echnology Prog nds	gram Gove	rnment Reso		Program, BO rce Injection	,	gram) Indi	ustry Resource


Commercialization Chasm

EXAMPLES OF Research and Technology Organisations (RTOs) WORKING ALONG THE WHOLE VALUE CHAIN (1)

New printed intelligence into PrintoCent pilot factory

The idea of printed intelligence originated from RTOs and companies rather than from basic research. Idea development required formulation of the scale (What kind of material can be used as ink? What kind of components would be needed? On what kind of material can the inks be printed?). All of those were crucial questions that needed to be answered before massive pilot lines could be thought of. Nowadays this research has led to a whole new industrial branch. After basic scales of printing process and materials were assessed, the actual components were designed and constructed at VTT in Oulu in order to validate the technology. First product ideas were formulated and a

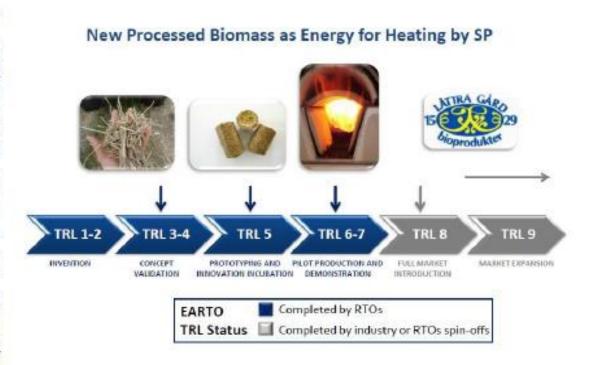


manufacturing line for their pilot production prepared. The research and development work has led to a unique collection of several pilot production that enable even piloting mass production. Several product families have been tested (photovoltaics, bio-based printable power sources, printable diagnostics). A total of 14 spin-off companies have been or are currently supported by the pilot facility, and new ideas and refinements are constantly developed.

EXAMPLES OF RTOS WORKING ALONG THE WHOLE VALUE CHAIN (2)

LUMBIA, Re-education system against low back pain

Low Back Pain (LBP) is the leading cause of activity limitation and work absence throughout much of the world. Tecnalia, by means of the FIK initiative (private fund for R&D) and with the crucial contribution of the company Bioengineering, has created LUMBIA, a wearable postural re-education device based on electromyography (EMG), for the assessment, prevention and treatment of low back pain. It acts by alerting the user via on-spot vibro-tactile feedback, when the unaided muscular activation pattern is not adequate. As an assessment tool, LUMBIA is a non-invasive tool that can be used during educational interventions,



back training programs, cognitive behavioral treatment plans and multidisciplinary bio- psychosocial rehabilitation plans. In order to be able to bring a device to the market in the EU, the device must meet the essential requirements of the Medical Devices Directive as well as the standards related to its device class. For the US market, any new product needs to meet the Food and Drug Administration's requirements. This step is currently being done by BTS Bioengineering to reach a TRL level 8 stage before full deployment in the market by BTS Bioengineering.

EXAMPLES OF RTOS WORKING ALONG THE WHOLE VALUE CHAIN (3)

Innovative Production Process: Processed Biomass, from seed to heat

Låttra Farm Bioproducts is an agricultural business which has been operating a small-scale commercial briquetting plant in Sweden since 1994. In light of increasing woodchip prices and growing competition for raw material, the plans to start local production of reed canary grass (RCG) briquettes began in 2003. Today, company has equipment incorporate RCG as raw material in briquette production; but, more work was needed to achieve an optimal production chain for commercial operations. SP Technical Research Institute of Sweden has worked together with Låttra Farm and local energy providers to develop and optimize the production and briquetting of

RCG to achieve high-grade solid fuel which can be used in new and existing heating plants. Work is continuing to further improve the efficiency production and briquetting as a sustainable use of processed biomass from the field to commercial application in building heating.

ตัวอย่างคำนิยาม TRL ในต่างประเทศ

NASA,USA.	Horizon 2020, EU	Office of Environmental Management U.S. Department of Energy	Sandia National Lab, USA.
 TRL 1 Basic principles observed and reported TRL 2 Technology concept and/or application formulated TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept TRL 4 Component and/or breadboard validation in laboratory environment TRL 5 Component and/or breadboard validation in a relevant environment TRL 6 System/subsystem model or prototype demonstration in a a relevant environment TRL 7 System prototype demonstration in a space environment TRL 8 Actual system completed and "flight qualified" through test and demonstration (ground or flight) TRL 9 Actual system "flight proven" through successful mission operations 	 TRL 1 Basic principles observed TRL 2 Technology concept formulated TRL 3 Experimental proof of concept TRL 4 Technology validated in lab TRL 5 Technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) TRL 6 Technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies) TRL 7 System prototype demonstration in operational environment TRL 8 System complete and qualified TRL 9 Actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space) 	 TRL 1 Basic principles observed and reported TRL 2 Technology concept and/or application formulated TRL 3 Analytical and experimental critical function and/or characteristic proof of concept TRL 4 Component and/or system validation in laboratory environment TRL 5 Laboratory scale, similar system validation in relevant environment TRL 6 Engineering/pilot-scale, similar (prototypical) system validation in relevant environment TRL 7 Full-scale, similar (prototypical) system demonstrated in relevant Environment TRL 8 Actual system completed and qualified through test and demonstration. TRL 9 Actual system operated over the full range of expected conditions. 	 TRL 1 Basic principles observed and reported TRL 2 Concept and/or application formulated TRL 3 Concepts demonstrated analytically or experimentally TRL 4 Key elements demonstrated in laboratory environment TRL 5 Key elements demonstrated in relevant environments TRL 6 Representative of the deliverable demonstrated in relevant environments TRL 7 Final development version of the deliverable demonstrated in operational Environment TRL 8 Actual deliverable qualified through test and demonstration TRL 9 Operational use of deliverable

Source: https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf Technology Readiness Assessment Report, Office of Environmental Management U.S. Department of Energy, 2010 Sandia National Labs "Measuring the Maturity of a Technology: Guidance on Assigning a TRL", October 2007.

TRL และการประยุกต์ใช้เพื่อการให้ทุน ในหน่วยงานวิจัยในประเทศ

หน่วยงานบริหารจัดการโปรแกรม PMU และหน่วยงานให้ทุนอื่นๆ

ตัวอย่าง เงื่อนไขการให้ทุนหน่วยงานภายนอก

ประกาศรับข้อเสนอ ทุนวิจัยและนวัตกรรมในประเด็นสำคัญของประเทศ "การสมเสริมอุตสาหกรรมสำคัญของประเทศ (S-Curve)"

เพื่อยทระดับการซับเคลื่อนเศรษฐทิจให้เติบโตบนฐานนวัตกรรม และยกระดับการแข่งขันของภาคอุตสาหกรรมไทยสร้างผลกระทบในเชิงเศรษฐกิจ

- อตสาหกรรมยานยนต์สมัยใหม่และอิเล็กทรอนิกส์อิจฉริยะ
- 7. อิตสาหกรรมการแพทย์ครบวงจร
- 8. อดสาหกรรมการบินและโลจิสติกส์
- 9. อตสาหกรรมความมั่นคง และเทคโนโลยีอวกาศ
- 10. ກາຣພັໝມາພລັດກັໝາ໌ Innovative House

ตั้งแต่วันที่ 20 กันยายน 2562 - 30 กันยายน 2563

- โจทย์วิจัยมีความเป็นไปได้ทางการตลาด มีความเป็นไปได้ด้านเทคโนโลยีการผลิตและมาตรฐานคุณภาพของผลิตภัณฑ์วิทยาศาสตร์และเทคโนโลยี และมีนักวิจัยที่มีความเชี่ยวชาญตรงตามความต้องการ
- โจทย์วิจัยมาจากความต้องการของภาคอุตสาหกรรม
- มีภาคเอกซน หรือ หน่วยงานร่วมดำเนินการวิจัยอย่างน้อย 1 ราย
- ภาคเอกชนต้องร่วมทุนไม่น้อยกว่าร้อยละ 20 (in cash และ in kind) โดยภาคเอกชนลงทุนเป็น in-cash อย่างน้อยร้อยละ 10 ของมูลค่าโครงการ
- อย่างน้อยร้อยละ 20 (In cash + In Kind) เพื่อให้มีส่วนร่วมในการทำงานอย่างจิงจัง และยืนยันความตั้งใจในการนำผลงานไปใช้ประโยชน์จริงในเชิง พานิชย์ Matching funm private sector
- งานที่ดำเนินการควรอยู่ใน Technklogy Readiness Level ขั้นต่ำที่ Level 3 หรือมีแผนการพัฒนาธุรกิจอย่างชัดเจน
- การบริการจัดการโปรแกรม ข้อตกลงเรื่องลิขสทธิความเป็นเจ้าของและการใช้ประโยชน์จากทรัพย์สินทางปัญญาร่วมกับภาคเอกชน เป็นไปตามระเบียบ ของ วช.

อ้างอิงข้อมูลจาก สถาบันวิจัยและพัฒนาแห่งมหาวิทยาลัยเกษตรศาสตร์

	6		5	
119 19 194	25916	າໄລ ເຊົາ ເລ	โครงการของ	สาภ
PP (1) 19	10 991	ONING	PLIANII I 9 0 0 A	bi dil.

หน่วยบริหารและจัดการทุนด้านการเพิ่มความสามารถในการแข่งขันของประเทศ (บพข.) ข้อเสนอโครงการฉบับสมบูรณ์ (Full Proposal) ปังบประมาณ 2564

แพลตฟอร์ม (Platform)	3 การวิจัยและสร้างนวัตกรรมเพื่อเพิ่มขีดความสามารถการแข่งขัน
โปรแกรม (Program)	10 ยกระดับความสามารถการแข่งขันและวางรากฐานทางเศรษฐกิจ
เป้าหมาย (Objective)	
ผลสัมฤทธิ์ที่สำคัญ (หลัก)	
ผลสัมฤทธิ์ที่สำคัญ (รอง)	

ตัวอย่างการกรอกระดับ TRL ในข้อเสนอโครงการ

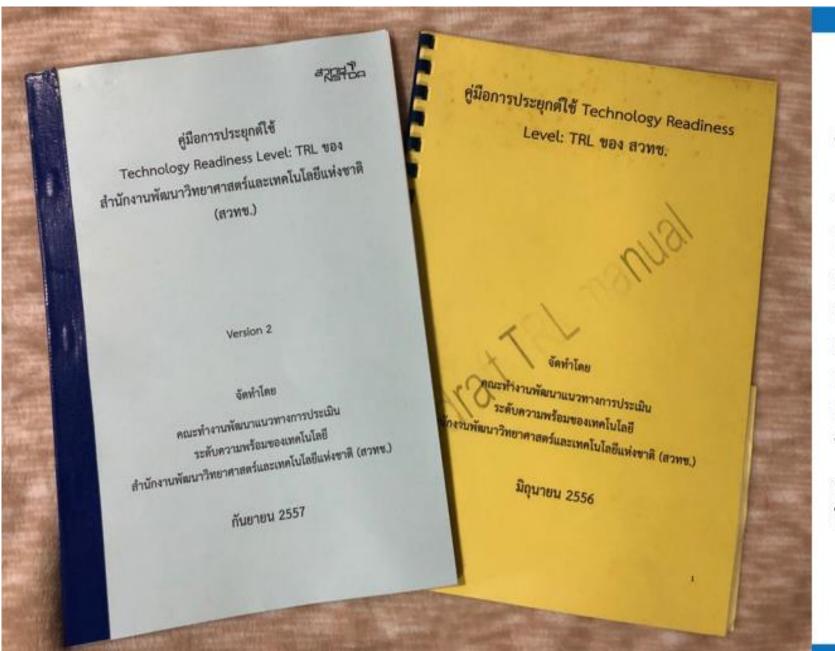
- 11. ระดับความพร้อมทางเทคโนโลยี และสังคม (ดูคำอธิบายในภาคผนวก)
 - Technology Readiness Level; TRL TRL ณ ปัจจบัน ระดับ รายละเอียด (ให้แนบหลักฐานที่แสดงว่าอยู่ใน TRL ระดับนั้นๆ เช่นผลการทดสอบ) TRL เมื่องานวิจัยเสร็จสิ้นระดับ...... รายละเอียด

o 1	
ตวอยางเอกสาร Tr	RL ที่ใช [้] อ้างอิงในการกรอก
ด้างดิงตาก สำรักงารเพ็พเบากินแกสาสพล์แ	ละเหตุโรโลยีแร่งชาติ (สถุเหตุ)

สิ่งที่ส่งมาด้วย 1

ดำอธิบายระดับความพร้อมของเทคโนโลยีสู่อุตสาหกรรม

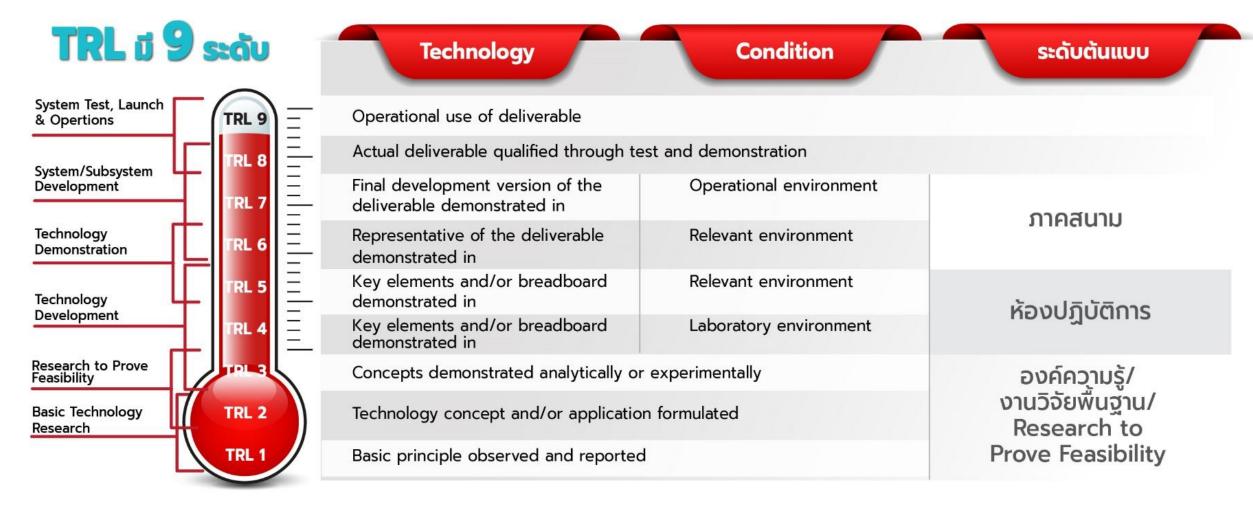
(TRL: Technology Readiness Levels Definitions)


ระดับที่	TRL: Technology Readiness Levels	ค้าอธิบาย	ตัวอย่างผลงาน: คอมพิวเตอร์ช่วยวาง แผนการจัดฟัน	ตัวอย่างผลงานด้าน พันธุ์พืช/พันธุ์สัตว์
1	Basic principles	การศึกษาค้นพบและข้อสังเกตพื้นฐาน:	แสดงถึงแนวคิดการวิจัย	เอกสารสรุปผล
	observed and	เป็นงานวิจัยที่มีระดับความพร้อมทางเทคโนโลยีต่ำที่สุด โดยเป็นงานวิจัยทาง	พื้นฐานที่สามารถ	การศึกษาและงานวิจัยที่
	reported.	วิทยาศาสตร์ชั้นเริ่มต้นก่อนการเปลี่ยนแปลงไปสู่งานวิจัยและพัฒนาเชิงประยุกต์	ประยุกต์ใช้ในชอฟต์แวร์	เกี่ยวข้องกับหลักการ
		ซึ่งอาจรวมถึงเอกสารการศึกษาองค์ประกอบขั้นพื้นฐานของเทคโนโลยี	หรือคุณสมบัติพื้นฐาน	พื้นฐานของเทคโนโลยี

การประเมิน ระดับความพร้อมของเทคโนโลยี (Technology Readiness Level: TRL) ของ สวทช.

ดร.วรางคณา ปัญญากรวงศ์

นักวิจัยนโยบาย ฝ่ายบริหารกลยุทธ์และนโยบายองค์กร สวทช.



ตุลาคม 2555 สวทช. ตั้ง

"คณะทำงานพัฒนา
แนวทางการประเมิน
ระดับความพร้อม
ของเทคโนโลยี" ขึ้น
เพื่อพัฒนาคู่มือการ
ประยุกต์ใช้ TRL ก่อน
จะมีการประกาศใช้
TRL ในการระบุ
สถานภาพของ
โครงการวิจัย

คู่มือประยุกต์ใช้ TRL ของ สวทช.

ที่มา: Adapted from Sandia National Labs "Measuring the Maturity of a Technology : Guidance on Assigning a TRL", October 2007 Adapted from Technology Readiness Levels in the Department of Defense (DoD) http://en.wikipedia.org/wiki/Technology_readiness_level Adapted from NASA Small Business Innovation Research & Technology Transfer 2012 Program Solicitations http://sbir.gsfc.nasa.gov/SBIR/sbirsttr2012/solicitation/forms/appendix_B.pdf 27

ข้อสังเกตในการประยุกต์ใช้ TRL

- 1
- ระดับความพร้อมของเทคโนโลยีไม่ใช่ระดับความยากของเทคโนโลยี
- 2
- เมื่อเปลี่ยนแปลงบริบทสิ่งแวดล้อมใหม่ ต้องทำการประเมิน TRL ใหม่ให้เข้ากับสิ่งแวดล้อมนั้นๆ
- 3
- ผลงานวิจัย/เทคโนโลยี ของ สวทช. ไม่จำเป็นต้องพัฒนาเอง ตั้งแต่ระดับ TRL 1-9 การส่งมอบผลงานวิจัย/ เทคโนโลยีขึ้นอยู่กับศักยภาพความพร้อมของลูกค้า (เอกชนมีศักยภาพสูง = สวทช. ส่งมอบผลงานที่มี TRL ระดับต่ำได้ เอกชนมีศักยภาพต่ำ สวทช. ก็ต้องลงทุนพัฒนางานวิจัยจนไปถึงระดับ TRL ที่ค่อนข้างสูง)
- 4
- TRL หมายถึงเทคโนโลยีหรือต้นแบบผลิตภัณฑ์/กระบวนการมีความพร้อมใช้ แต่จะมีลูกค้าหรือผู้นำไปใช้งาน หรือไม่นั้นเป็นอีกประเด็นหนึ่ง ดังนั้นไม่ควรผูกระดับ TRL กับการถ่ายทอดเทคโนโลยี/ Licensing
- 5
- การประเมินระดับ TRL ส่งมอบ ควรประเมิน ณ เวลาที่ส่งมอบงาน

คำจำกัดความ TRL ฉบับภาษาอังกฤษ	คำจำกัดความ TRL ฉบับภาษาไทย และข้อมูลสนับสนุน (Supporting Information)
TRL 1: Basic principles observed and reported	TRL 1 : หลักการพื้นฐานได้รับการพิจารณาและมีการรายงาน
This is the first level of technology readiness and includes fundamental scientific research. At this level, basic scientific principles are being studied analytically and/or	
experimentally. Examples might include paper studies of a technology's basic properties.	□ เอกสารสรุปผลการศึกษาและงานวิจัยที่เกี่ยวข้องกับหลักการพื้นฐานทางวิทยาศาสตร์และ เทคโนโลยีที่เคยมีในอดีต โดยระบุอ้างอิงว่ามีใคร ทำการศึกษาเรื่องอะไร ได้ผลอย่างไร ที่ใด และเมื่อใด (Literature review/Prior art)
TRL 2: Concept and/or application formulated	TRL 2 : มีการสร้างแนวคิดด้านเทคโนโลยี และ/หรือ การประยุกต์ใช้
Practical applications are beginning to be invented or identified. Applications are still speculative and there is no proof or detailed analysis to support assumptions. Examples might include applied research in a field of	คำอธิบาย เริ่มทำการศึกษาวิเคราะห์เบื้องต้นเพื่อยืนยันหลักการพื้นฐานทางวิทยาศาสตร์และ เทคโนโลยีและความเป็นไปได้ในการประยุกต์ใช้ โดยยังไม่มีการพิสูจน์หรือวิเคราะห์ในรายละเอียด เพื่อสนับสนุนสมมติฐาน
potential interest.	เอกสารสรุปการศึกษาความเป็นไปได้ของแนวคิด/การประยุกต์ใช้ TRL 2 ประกอบด้วย □ ผลสรุปแนวคิดจากการวิเคราะห์ผลงานวิจัยที่เกี่ยวข้อง
	□ ผลสรุปความเป็นไปได้ทางวิทยาศาสตร์ของแนวคิด/การประยุกต์ใช้เทคโนโลยี โดยมีการระบุ Technical challenge ว่างานชิ้นนี้มีความยาก ความท้าทาย และความใหม่อย่างไร □ กำหนดโจทย์วิจัย, ขอบเขตของงานวิจัย และวิธีการดำเนินงานวิจัย
	ี่ บ้อกำหนดทางเทคนิค (Specification) หรือ คุณลักษณะ (Feature) เบื้องต้นของผลงานวิจัย เป้าหมาย หรือสมมุติฐานของงานวิจัย (Hypothesis)* หรือ การออกแบบแบบแผนการทดลอง/ การวิจัย (Experimental design)*
	*ในกรณีที่เป็นงานวิจัยทางด้านองค์ความรู้ ที่ไม่มีข้อกำหนดทางเทคนิคที่ชัดเจน

Technology Readiness Levels (TRLs)

Federal Funding Opportunities (continued)

Readiness Levels (TRLs)

Technology

Federal Funding Opportunities

(continued)

TRL-1

MUST DO:

Expand section in core proposal on societal, environmental, or economic need that will be addressed: identify relevant market, target customers, customer needs, direct and indirect competitors, competitive advantages.

- Outline commercialization plan.
- Develop "elevator speech" and "pitch deck" to summarize key concepts / TRL-1 results for potential investors / funders.
- Prepare peer-reviewed paper, if appropriate.
- Begin preparing business plan.

Adobe Stock 55123326 Licensed to American Diversified Energy, LLC

 Farming and Ranching: agricultural safety, agricultural technology, farmer education, organic agriculture, small and family forms, sustainable agriculture

- Food Science: food quality, food safety International: global food security
- Natural Resources: air, forests, grasslands and rangelands, soil, water
- Plants: crop production, pest management, plant breeding, plant health

U.S. DEPARTMENT OF DEFENSE (DOD)

More than 1,000 grant opportunities are offered each year by the DOD through its various branches of service, medical units, laboratories, research projects, engineering divisions, environmental cleanup and restoration programs, business and inventory management divisions, and energy security initiatives. These include:

Defense Advanced Research Projects (DARPA)

DARPA's mission is "to make pivotal investments in breakthrough technologies and capabilities for national security." DARPA has repeatedly delivered on that mission, transforming revolutionary concepts and even seeming impossibilities into practical capabilities. The results have included not only game-changing military capabilities such as precision weapons and stealth technology, but also such icons of modern civilian society such as the Internet, automated voice recognition and language translation, and Global Positioning System receivers small enough to embed in myriad consumer devices.

DARPA explicitly reaches for transformational change instead of incremental advances. It is looking for promising technologies within science and engineering research communities. These new designs and technologies have to radically improve military capabilities, offering "strategies to surprise our adversaries," with payoffs for non-military uses afterwards (such as the computer, ceramic bearings, and insulators). The DARPA investment has to fundamentally reshape existing fields or create entirely new disciplines and transform these initiatives into profoundly new, gamechanging technologies for U.S. national security and the commercial and private sectors

Research to Prove Viability

NEXT UP: Basic Research (continued)

TRL-2

Invention begins

The application, utilization, and operation of the technology, concept, process, or approach is formulated. Design and novel features are validated through model or small-scale testing in a laboratory environment. Technical and business potential are confirmed.

SUCCESSFUL COMPLETION:

when it is shown that the proposed technology, concept, process, or approach can meet specified acceptance criteria with additional testing.

MUST-Do:

- Update core proposal, along with feasibility, risk and solution measures, based on TRL-2 results.
- Prepare value proposition.
- Expand economic and market analysis: conduct market study to flesh out details on target customers, customer needs, competitors, and competitive advantages.
- Complete descriptions of company, management, proposed products and services, and market analysis sections of business plan.
- Refine "elevator speech" and "pitch deck."
- Assess intellectual property value of R&D in case the idea, concept, process, or approach is ultimately not ready for commercialization.

TRL-2

Federal funding opportunities:

- NATIONAL SCIENCE FOUNDATION (NSF)
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - National Institute of Food and Agriculture (NIFA)
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF DEFENSE (DOD)

See description of financial support under TRL-1 above

- o Defense Advanced Research Projects (DARPA)
 See description of financial support under TRL-1 above
- Defense Innovation Unit Experimental (DIUx)
 DIUx is a Silicon-Valley based and inspired, fast-moving government entity that provides non-dilutive capital to companies to solve national defense problems. It can move from initial presentation to approval of a funding award in as little as 90 days. It seeks to contract with companies offering disruptive, game-changing solutions in a range of areas from autonomy and artificial intelligence to human systems, information technology, and space to solve a host of defense problems. View the PBS NewsHour special on DIUx that aired on August 15, 2018 at: https://www.pbs.org/newshour/show/how-the-pentagon-joins-forces-with-silicon-valley-startups.
- Other DOD grant opportunities
 See description of financial support under TRL-1 above
- . U.S. DEPARTMENT OF ENERGY (DOE)

DOE funding for ideas, concepts, and approaches in the TRL-2, -3, and -4 stages of development typically come through the DOE's SBIR/STTR program, which issue SBIR/STTR funding solicitations twice per year tied to specific areas of focus from its various offices, except for ARPA-E. (See the Phase I SBIR/STTR description below.) Each DOE office also issue periodic Funding Opportunity Announcements (FOAs) targeted to a wide range of TRLs for research, development, and demonstration in the fields of interest related to their missions. These include:

Advanced Research Program Agency – Energy (ARPA-E)
 See description of financial support under TRL-1 above

5

คำจำกัดความ TRL ฉบับภาษาอังกฤษ	คำจำกัดความ TRL ฉบับภาษาไทย
	และข้อมูลสนับสนุน (Supporting Information)
TRL 3: Concepts demonstrated analytically or	TRL 3 : แนวคิดได้ถูกสาธิตด้วยการวิเคราะห์ จำลอง หรือทดลอง
experimentally	
	คำอธิบาย ผลการศึกษาวิจัย จำลอง ทดลอง หรือ วิเคราะห์เพื่อพิสูจน์ว่าหลักการนั้น
Active research and development is initiated. This	เป็นไปได้ (Proof-of-concept)
includes analytical and laboratory-based studies	
to physically validate analytical predictions of key	เอกสาร/หลักฐานเชิงคุณภาพ TRL 3 ประกอบด้วย
elements of the technology. These studies and	□ รายงานผลการวิเคราะห์ (เช่น Technology trends, IP landscape) จำลอง หรือ
experiments should constitute "proof-of-	ทดลอง ที่พิสูจน์ว่าหลักการขององค์ประกอบหลักที่สำคัญมีความเป็นไปได้
concept." validation of the applications/concepts	(Proof of concept) หรือคาดว่าจะได้ผลตามที่คาดหวัง
formulated at TRL 2. Examples include the study	□ รายงาน/ผลการศึกษาว่ามีมาตรฐาน/กฎหมายอะไรที่เกี่ยวข้องกับผลิตภัณฑ์หรือ
of separate elements of the technology that are	กระบวนการที่กำลังศึกษาวิจัย (ถ้าเกี่ยวข้อง)
not yet integrated or representative.	□ ผลงานตีพิมพ์ทางวิชาการ (ถ้ามี)
	่ □ การจดทรัพย์สินทางปัญญา (ถ้ามี)

ที่มา: คู่มือการประเมินระดับความพร้อมเทคโนโลยี (TRL)สวทช. เวอร์ชั่น 2.2

Technology Readiness Levels (TRLs)

Adobe Stock 108048373 Licensed to American Diversified Energy, LLC

Federal Funding Opportunities

(continued)

The objective of Phase I is to establish the technical merit, feasibility, and commercial potential of an applicant's proposed research and research and development (R/R&D) efforts and to determine the quality of performance of the small business organization prior to providing further federal support in Phase II. SBIR Phase I awards normally do not exceed \$150,000 (although, in a few cases, awards may go up to \$225,000) and are for projects lasting 6 to 12 months. The agencies that offer SBIR grants are as follows.

- U.S. Department of Agriculture (USDA)
- U.S. Department of Commerce (DOC):
- National Institute of Standards (NIS)
- National Oceanic and Atmospheric Administration (NOAA)
- U.S. Department of Defense (DOD) also offers Phase I STTR grants
- U.S. Department of Energy (DOE) also offers Phase I STTR grants
- U.S. Department of Health and Human Services (HHS), including the National Institutes of Health (NIH) – also offers Phase I STTR grants
- U.S. Department of Homeland Security (DHS)
- U.S. Department of Transportation (DOT)
- U.S. Environmental Protection Agency (EPA)
- National Aeronautics and Space Administration (NASA) also offers Phase I STTR grants
- National Science Foundation (NSF) also offers STTR grants

NEXT UP: Research to Prove Feasibility (continued) / Technology Development

TRL-3

INITIATION OF ACTIVE R&D

Proof-of-concept studies and laboratory analyses are conducted to test and validate analytical and experimental critical functions and characteristics. Bench-scale, prototype, and model

Federal funding opportunities:

- NATIONAL SCIENCE FOUNDATION (NSF)
 - See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - National Institute of Food and Agriculture (NIFA)
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF DEFENSE (DOD)
 - o Defense Advanced Research Projects (DARPA)
 See description of financial support under TRL-1 above
 - o Defense Innovation Unit Experimental (DIUx)

Technology Readiness Levels (TRLs)

TRL-3

continued

components, units, process reactors, and simulators are built and functionally demonstrated, individually or in series, through testing over a limited range of simulated or actual operating conditions.

SUCCESSFUL COMPLETION:

when it is shown that critical functions and characteristics operate or respond as projected.

MUST-DO:

- Update core proposal, value proposition, and business plan based on TRL-3 results
- Identify areas that need further development: concepts that have been
- thoroughly researched in the lab with no consideration given to scale-up challenges should be viewed as insufficiently de-risked. Conversely, a highly detailed design with an unproven core element should be dismissed.
- Begin development of financial model: identify and quantify input and production costs.
- If minimum cost is unacceptable, additional work will be required to identify different inputs, sources of inputs, and production methods to lower costs.
- This step is necessary to validate the value proposition and commercial viability of the proposed technology, concept, process, or approach to give confidence to investors and other funders that it is ready for scale up.

Federal Funding Opportunities

(continued)

See description of financial support under TRL-2 above

- Other DOD grant opportunities
- See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF ENERGY (DOE)
 - Advanced Research Program Agency Energy (ARPA-E)
 See description of financial support under TRL-1 above
 - o Office of Science (OS)
 - See description of financial support under TRL-1 above
 - Office of Fossil Energy (FE)
 See description of financial support under TRL-2 above
 - Office of Energy Delivery and Reliability (OE) and
 Office of Cybersecurity, Energy Security, and Emergency Response (CESER)
 - See description of financial support under TRL-2 above
 - Office of Energy Efficiency and Renewable Energy (EERE)
 See description of financial support under TRL-2 above
- PHASE I SMALL BUSINESS INNOVATION RESEARCH (SBIR) AND SMALL BUSINESS TECHNOLOGY TRANSFER (STTR)

See description of Phase I financial support under TRL-2 above

- o U.S. Department of Agriculture (USDA)
- U.S. Department of Commerce (DOC):
 - National Institute of Standards (NIS)
 - National Oceanic and Atmospheric Administration (NOAA)
- o U.S. Department of Defense (DOD)
- U.S. Department of Energy (DOE)
- U.S. Department of Health and Human Services (HHS), including the National Institutes of Health (NIH)
- U.S. Department of Homeland Security (DHS)
- U.S. Department of Transportation (DOT)
- U.S. Environmental Protection Agency (EPA)
- National Aeronautics and Space Administration (NASA)

National Science Foundation (NSF)

คำจำกัดความ TRL ฉบับภาษาอังกฤษ TRL 4: Key elements and/or breadboard demonstrated in laboratory environment The key elements must be integrated to establish that the pieces will work together. The validation should be consistent with the requirements of potential applications but is relatively low-fidelity ได้ when compared to a final product. Examples include integration of ad-hoc hardware or software

คำจำกัดความ TRL ฉบับภาษาไทย และข้อมูลสนับสนุน (Supporting Information)

TRL 4 : องค์ประกอบที่สำคัญหรือบอร์ดทดลองอิเล็กทรอนิกส์จำลอง (Breadboard) ได้ถูกสาธิตและพิสูจน์ในระดับห้องปฏิบัติการแล้ว

คำอธิบาย องค์ประกอบที่สำคัญ ได้ถูกประกอบเข้ากันเพื่อให้ชิ้นส่วนทำงานด้วยกันได้ และต้นแบบผ่านการสาธิตและพิสูจน์ในระดับห้องปฏิบัติการ สามารถแก้ไขปัญหาเฉพาะ ้เรื่อง รวมทั้งแสดงให้เห็นมุมมองของการทำงานหลักๆ สามารถทำงานได้ตามที่คาดหวัง

เอกสาร/หลักฐานเชิงคุณภาพ TRL 4 ประกอบด้วย

(Reproducibility)

ีวิธีการทดสอบเชิงวิทยาศาสตร์ที่น่าเชื่อถือตาม Standard method ที่มีแหล่ง อ้างอิง (อาทิเช่น Publication, Peer review) หากไม่มีแหล่งอ้างอิงควรมี รายละเอียดของหลักการ สมมติฐาน เงื่อนไข และขอบเขตของการทดสอบ ผลการทดสอบที่แสดงให้เห็นว่าองค์ประกอบที่สำคัญของต้นแบบผลิตภัณฑ์/ กระบวนการถูกประกอบเข้าด้วยกันและทำงานร่วมกันได้ในระดับห้องปฏิบัติการ สอดคล้องกับข้อกำหนดทางเทคนิค (Specification) และทำซ้ำได้

ที่มา: คู่มือการประเมินระดับความพร้อมเทคโนโลยี (TRL)สวทช. เวอร์ชั่น 2.2

in the laboratory such as breadboards, low fidelity

development components, and rapid prototypes.

Technology Readiness Levels (TRLs)

Federal Funding Opportunities

(continued)

installment #1

The first installment of this article, which covers TRLs 1-3, appeared in BioFuels Digest on ______ / yesterday. You may view this article at [link].

Research to Prove Feasibility (continued) / Technology Development (continued)

TRL-4

INTEGRATION OF BASIC COMPONENTS

The basic elements, components, and processes central to the technology, concept, process, or approach are integrated.

Component, process, and/or bench-scale validation is conducted in a laboratory environment to establish that the pieces will work together.

SUCCESSFUL COMPLETION:

when it is shown that the pieces work together, and the new technology, concept, process, or approach is ready for first use.

Federal funding opportunities:

- NATIONAL SCIENCE FOUNDATION (NSF)
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - National Institute of Food and Agriculture (NIFA)
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF DEFENSE (DOD)
 - Defense Advanced Research Projects (DARPA)
 See description of financial support under TRL-1 above
 - Defense Innovation Unit Experimental (DIUx)
 See description of financial support under TRL-2 above
 - Other DOD grant opportunities
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF ENERGY (DOE)
 - Advanced Research Program Agency Energy (ARPA-E)
 See description of financial support under TRL-1 above

Technology Readiness Levels (TRLs)

TRL-4

continued

MUST-DO:

- Develop / refine initial flow sheets, schematics, heat, material, energy balances, etc.
- Refine financial models and costs
- Update core proposal, value proposition, and business plan based on TRL-4 results
- Ensure update presents a compelling story to investors and funders; moving to TRL-5 requires a significant investment to support additional technical labor and capital equipment.

Adobe Stock 114828033 Licensed to American Diversified Energy, LLC

Federal Funding Opportunities

(continued)

- Office of Science (OS)
 See description of financial support under TRL-1 above
- Office of Fossil Energy (FE)
 See description of financial support under TRL-2 above
- Office of Energy Delivery and Reliability (OE) and
 Office of Cybersecurity, Energy Security, and Emergency Response (CESER)
 - See description of financial support under TRL-2 above
- Office of Energy Efficiency and Renewable Energy (EERE)
 See description of financial support under TRL-2 above
- PHASE II SMALL BUSINESS INNOVATION RESEARCH (SBIR) AND SMALL BUSINESS TECHNOLOGY TRANSFER (STTR)

The objective of Phase II is to continue the R/R&D efforts initiated in Phase I. Funding is based on the results achieved in Phase I and the scientific and technical merit and commercial potential of the project proposed in Phase II. Only Phase I awardes are eligible for a Phase II award. SBIR Phase II awards normally do not exceed \$1.5 million in total costs for 2 years.

- U.S. Department of Agriculture (USDA)
- U.S. Department of Commerce (DOC):
 - National Institute of Standards (NIS)
 - National Oceanic and Atmospheric Administration (NOAA)
- U.S. Department of Defense (DOD) also offers Phase II STTR grants
- U.S. Department of Energy (DOE) also offers Phase II STTR grants
- U.S. Department of Health and Human Services (HHS), including the National Institutes of Health (NIH) - also offers Phase II STTR grants
- U.S. Department of Homeland Security (DHS)
- U.S. Department of Transportation (DOT)
- U.S. Environmental Protection Agency (EPA)
- National Aeronautics and Space Administration (NASA) also offers Phase II STTR grants
- National Science Foundation (NSF) also offers Phase II STTR grants

NEXT UP: Technology Development (continued) / Technology Demonstration

คำจำกัดความ TRL ฉบับภาษาอังกฤษ	คำจำกัดความ TRL ฉบับภาษาไทย และข้อมูลสนับสนุน (Supporting Information)
TRL 5: Key elements and/or breadboard demonstrated in relevant environments	TRL 5 : องค์ประกอบที่สำคัญหรือบอร์ดทดลองอิเล็กทรอนิกส์จำลอง (Breadboard) ได้ ถูกสาธิตและพิสูจน์ในสภาวะเลียนแบบที่ใกล้เคียงสภาวะแวดล้อมจริง
Fidelity of the key elements increases significantly. Key elements are integrated with realistic supporting elements so that the technology can be tested and demonstrated in simulated or actual environments.	(TRL 5 ยังไม่ใช่ต้นแบบภาคสนาม)
Notice Who is the customer? Describe how these requirements meet the customer's needs. Describe the environmental requirements including abnormal or extrema events.	 □ มาตรฐานการทดสอบ หรือวิธีการทดสอบที่น่าเชื่อถือตาม Standard method ที่มี แหล่งอ้างอิงตามหลักการหรืองานวิจัยที่เกี่ยวข้อง หากไม่มีแหล่งอ้างอิงควรมี รายละเอียดของหลักการ สมมติฐาน เงื่อนไข และขอบเขตของการทดสอบ □ ผลการทดสอบในห้องปฏิบัติการในสถานการณ์จำลอง/ในสภาวะเลียนแบบที่ ใกล้เคียงสภาวะแวดล้อมจริง* สอดคล้องตามความต้องการที่จะประยุกต์ใช้งานของ กลุ่มเป้าหมาย** ที่แสดงให้เห็นว่าองค์ประกอบที่สำคัญของตันแบบผลิตภัณฑ์/ กระบวนการสามารถทำงานร่วมกันกับองค์ประกอบสนับสนุนอื่นๆ ได้ รวมทั้งมีการ เปรียบเทียบผลการทดสอบกับสมมติฐาน/ข้อกำหนดทางเทคนิค (Specification) ที่ตั้งไว้ พร้อมปัญหาที่พบ * สภาวะแวดล้อมเลียนแบบที่ใกล้เคียงสภาวะแวดล้อมจริงของแต่ละเทคโนโลยีจะ แตกต่างกัน เช่น ซอฟต์แวร์จะมีการทดสอบในระดับ Alpha versions เทคโนโลยีจาน พันธุ์พืชหรือสัตว์ จะหมายถึง การคัดเลือกประชากรที่มีลักษณะตามเป้าหมาย โดยการ ปลูกหรือเลี้ยงทดสอบในระดับสถานีทดลอง (แปลงที่มีการดูแล/ควบคุม) เป็นตัน ** กลุ่มเป้าหมาย เช่น ลูกค้าที่สนใจทดสอบตันแบบ หรือ ลูกค้าที่คาดว่าจะเป็นผู้รับ ถ่ายทอดเทคโนโลยี โดยลูกค้าควรเป็นผู้กำหนด Requirement หากไม่มีลูกค้า ควรให้ ตัวแทนกลุ่มเป้าหมายที่น่าเชื่อถือ หรือ Third party ที่นักวิจัยและลูกค้ายอมรับ เป็นผู้ กำหนด
ที่มา: คู่มือการประเมินระดับความพร้อมเทคโนโลยี ((TRL)สวัทช. เวอร์ชั่น 2.2

Technology Readiness Levels (TRLs)

Federal Funding Opportunities

(continued)

TRL-5

VALIDATION OF OPERATIONAL INTEGRITY

Component, process, and/or bench-scale validation is conducted in an actual or simulated relevant environment. The completion of TRL-5 marks the end of bench-scale work and the final reduction of scientific risk. For technologies, concepts, processes, or approaches that will produce an end product, continuous, integrated tests during TRL-5 should be designed to produce small lots of the end product with its intended formulations and specifications, which should them be validated through third-party testing and analysis. These test lots can be provided to investors, offtake partners, and regulatory agencies. Some developers in the food, biomaterials and personal-care spaces may have the opportunity in TRL-5 to provide free samples to the public and market test their acceptance.

SUCCESSFUL COMPLETION:

when it is shown that the new technology, concept, process, or approach and its related processes, systems, hardware, and components operate as predicted in the intended environment and are ready to be integrated into a fully operational prototype.

MUST-Do:

 Refine and expand technical and engineering capabilities (via new hires or by engaging outside firms).

TRL-5

Federal funding opportunities:

- National Science Foundation (NSF)
 - See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - National Institute of Food and Agriculture (NIFA)
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF DEFENSE (DOD)
 - Defense Advanced Research Projects (DARPA)
 See description of financial support under TRL-1 above
 - Defense Innovation Unit Experimental (DIUx)
 - See description of financial support under TRL-2 above
 - Other DOD grant opportunities
 - See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF ENERGY (DOE)
 - Advanced Research Program Agency Energy (ARPA-E)
 See description of financial support under TRL-1 above
- Office of Science (OS)
 See description of financial support under TRL-1 above
- Office of Fossil Energy (FE)
 See description of financial support under TRL-2 above
- Office of Energy Delivery and Reliability (OE) and Office of Cybersecurity, Energy Security, and Emergency Response (CESER)
 See description of financial support under TRL-2 above
- Office of Energy Efficiency and Renewable Energy (EERE)
 See description of financial support under TRL-2 above
- PHASE II SMALL BUSINESS INNOVATION RESEARCH (SBIR) AND SMALL BUSINESS TECHNOLOGY TRANSFER (STTR)

See description of Phase II financial support under TRL-4 above

- U.S. Department of Agriculture (USDA)
- U.S. Department of Commerce (DOC):
 - National Institute of Standards (NIS)
 - National Oceanic and Atmospheric Administration (NOAA)
- U.S. Department of Defense (DOD)
- o U.S. Department of Energy (DOE)
- U.S. Department of Health and Human Services (HHS), including the National Institutes of Health (NIH)
- U.S. Department of Homeland Security (DHS)
- o U.S. Department of Transportation (DOT)
- U.S. Environmental Protection Agency (EPA)
- National Aeronautics and Space Administration (NASA)
- National Science Foundation (NSF)

 Update and expand core proposal; value proposition; cost breakdowns; financial model; business plan; flowsheets; heat, material, and energy balances; and feasibility, risk, and solution analyses based on TRL-5 results.

Adobe Stock 163392433 Licensed to American Diversified Energy, LLC

คำจำกัดความ TRL ฉบับภาษาอังกฤษ ดำจำกัดความ TRL ฉบับภาษาไทย และข้อมูลสนับสนุน (Supporting Information) TRL 6 : ต้นแบบของผลิตภัณฑ์หรือกระบวนการที่พร้อมเป็นสิ่งส่งมอบ ได้ผ่านการสาธิตและ TRL 6: Representative of the deliverable demonstrated สภาวะแวดล้อมที่เกี่ยวข้องกับการทำงานจริง พิสูจน์การใช้งานใน in relevant environments ี คำอธิบาย ต้นแบบของผลิตภัณฑ์หรือกระบวนการที่พร้อมเป็นสิ่งส่งมอบได้ผ่านการสาธิตและ Represents a major step in a technology's demonstrated พิสูจน์การใช้งานในสภาวะแวดล้อมที่เกี่ยวข้องกับการทำงานจริง (Relevant environment) ซึ่ง readiness. Examples include testing a prototype or หมายถึง ปัจจัยของสิ่งแวดล้อมที่มีผลเกี่ยวข้องต่อความสำเร็จ/ล้มเหลวในการทำงานของระบบ representative of a deliverable in a high fidelity ต้นแบบ ได้ถูกควบคุมให้เหมือนกับสภาวะทำงานจริง laboratory environment or in a simulated operational environment. เอกสาร/หลักฐานเชิงคุณภาพ TRL 6 ประกอบด้วย ีมาตรฐานการทดสอบ หรือวิธีการทดสอบที่น่าเชื่อถือตาม Standard method ที่มีแหล่ง **Notice** ้อ้างอิงตามหลักการหรืองานวิจัยที่เกี่ยวข้อง หากไม่มีแหล่งอ้างอิงควรมีรายละเอียดของ Has a prototype been created that is consistent with all หลักการ สมมติฐาน เงื่อนไข และขอบเขตของการทดสอบ of the agreed-upon requirements? Describe how the ผลการทดสอบที่แสดงให้เห็นว่าต้นแบบผลิตภัณฑ์หรือกระบวนการที่พร้อมเป็นสิ่งส่งมอบ prototype meets form, fit, and function requirements. ผ่านการสาธิตและพิสูจน์การใช้งานในสภาวะแวดล้อมที่เกี่ยวข้องกับการทำงานจริง - Has the prototype been demonstrated successfully in environment) เปรียบเทียบกับสมมติฐาน / ข้อกำหนดทางเทคนิค (Relevant the customer's required environments? Describe the (Specification) ที่ตั้งไว้ และสอดคล้องกับความต้องการประยุกต์ใช้งานของ demonstration. กลุ่มเป้าหมาย* รวมทั้งสามารถทำซ้ำได้ (Reproducibility) เพื่อแสดงให้เห็นว่าต้นแบบ พร้อมสำหรับการทดสอบในสภาวะทำงานจริง (Operational environment) หลักรานแสดงการยอมรับของกล่มเป้าหมาย*ที่มีต่อต้นแบบของผลิตภัณฑ์หรือกระบวนการ ระดับ TRL6 * กลุ่มเป้าหมาย เช่น ลูกค้าที่สนใจทดสอบต้นแบบ หรือ ลูกค้าที่คาดว่าจะเป็นผู้รับถ่ายทอด เทคโนโลยี โดยลูกค้าควรเป็นผู้กำหนด Requirement หากไม่มีลูกค้า ควรให้ตัวแทน กลุ่มเป้าหมายที่น่าเชื่อถือ หรือ Third party ที่นักวิจัยและลูกค้ายอมรับ เป็นผู้กำหนด

ที่มา: คู่มือการประเมินระดับความพร้อมเทคโนโลยี (TRL)สวทช. เวอร์ชั่น 2.2

 Update and expand core proposal; value proposition; cost breakdowns; financial model; business plan; flowsheets; heat, material, and energy balances; and feasibility, risk, and solution analyses based on TRL-5 results.

Federal Funding Opportunities

(continued)

Adobe Stock 163392433 Licensed to American Diversified Energy, LLC

NEXT UP: Technology Development (continued) / Technology Demonstration (continued) / System / Subsystem Development

TRL-6

MODEL, PROTOTYPE, OR PILOT TESTING

A fully-integrated, fully-operational system / subsystem model. technology, prototype process, or pilot is demonstrated in a relevant environment, with interface and functionality tests are conducted. There is no sharp transition between TRL-5 and TRL-6. which focuses on the design and operation of a prototype or pilotscale (nominally 1/100th of commercial scale) testing unit. Prototype and pilot development may still take place in a laboratory, but experiments are carried out at engineering scale, rather than bench scale. Prototype and pilot-scale unit operations may be designed and procured while bench-scale work continues, with the larger units replacing smaller units as they are brought online

Federal funding opportunities:

As new technologies, concepts, processes, and approaches move into TRL-6, the pool of grants and grant sources falls off — significantly, by more than \$10 billion — just as the costs for each TRL escalate. For example:

- The 10,000+ grants and \$7.5 billion of funding offered each year by NSF focus solely on basic and applied research. The bulk of NFS's solicitations are targeted to TRLs 1-3, with a smaller number of grants for TRLs-4 and -5.
- The \$300 million or so in annual grants available from DOE's Office of Science and ARPA-E, with few exceptions, also focus on basic and applied research and technology development.
- Finally, the \$2.5 billion offered each year through the SBIR/STTR program focus solely on stimulating innovation and moving promising ideas and concepts up through TRL-5. While the SBIR/STTR program is targeted to ideas and concepts that are initiated with a view toward eventual commercialization, its Phase III stage does not include any additional grant funding:
- Phase III Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR)

The objective of the SBIR/STTR Phase III, where appropriate, is for the small business to pursue commercialization objectives resulting from the Phase I/II R/R&D activities. The SBIR program does not fund Phase III; instead, the agencies that participate in the SBIR/STTR program offer multiple grant and incentive

Technology Readiness Levels (TRLs)

TRL-6

continued

and validated. Engineering-scale equivalents of all the unit operations that will be required at scale, including prototypes of any novel operations such as product separation.

SUCCESSFUL COMPLETION:

when it is shown that the technology, concept, process, or approach has demonstrated a sustained, consistent functionality and is ready for scale up. To the extent that there is a "valley of death" for proposed ventures moving up the TRL scale, it is most likely to occur inTRL-5/-6. Careful selection and specification of pilot, protype, and process equipment in TRL-5, and a deep understanding of their operational nuances in TRL-6 is critical to a successful continuous run in TRL-7.

Adobe Stock 5547724 Licensed to American Diversified Energy, LLC

Federal Funding Opportunities

(continued)

funding opportunities through their standing programs and other solicitations to fund further development of the technologies, concepts and approaches that show commercial promise in Phase 1/II R/R&D. For some federal agencies, Phase III may involve follow-on non-SBIR funded R&D or production contracts for products, processes, or services intended for use by the U.S. government.

Most of the agencies that participate in the SBIR/STTR program, therefore, are potential source of grants for TRL-6.-7. and -8:

- U.S. Department of Agriculture (USDA)
- U.S. Department of Commerce (DOC):
 - National Institute of Standards (NIS)
 - National Oceanic and Atmospheric Administration (NOAA)
- U.S. Department of Defense (DOD)
- U.S. Department of Energy (DOE)
- U.S. Department of Health and Human Services (HHS), including the National Institutes of Health (NIH)
- U.S. Department of Homeland Security (DHS)
- U.S. Department of Transportation (DOT)
- U.S. Environmental Protection Agency (EPA)
- National Aeronautics and Space Administration (NASA)

Follow-on grants for projects funded at earlier TRL stages, as well as grants for projects applying for grants at TRL-6 also are available from:

- U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - National Institute of Food and Agriculture (NIFA)
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF DEFENSE (DOD)
 - Defense Advanced Research Projects (DARPA)
 See description of financial support under TRL-1 above
 - Defense Innovation Unit Experimental (DIUx)
 See description of financial support under TRL-2 above
 - Other DOD grant opportunities
 See description of financial support under TRL-1 above
- U.S. DEPARTMENT OF ENERGY (DOE)
 - Office of Fossil Energy (FE)
 See description of financial support under TRL-2 above
 - Office of Energy Delivery and Reliability (OE) and

Federal Funding Opportunities

(continued)

TRL-6

continued

MUST-DO:

- Update and expand all project specifications, proposals, analyses, economics, etc. based on TRL-6 results.
- The TRL-6 prototype, process, pilot, model, or approach will be used by an engineering, procurement, and construction

Office of Cybersecurity, Energy Security, and Emergency Response (CESER)

See description of financial support under TRL-2 above

- Office of Energy Efficiency and Renewable Energy (EERE)
 See description of financial support under TRL-2 above
- OTHER FEDERAL GOVERNMENT AGENCIES beyond those listed above and those that participate in the SBIR/STTR program have grant programs and offer funding that may assist in, or supplement other grants, in carrying out TRL-6. For a list of these agencies, see TRL-7 below.

Continued below:

(EPC) or another appropriate firm to develop estimates for construction (or fabrication, development, or manufacturing) for the TRL-7 demonstration-scale prototype, process, model, approach, or plant (at 1/10th commercial scale) and develop relatively accurate (± 30-40 percent) capital / production cost estimates for the full-size, commercial-scale technology, plant, process, product, or approach.

NEXT UP: Technology Demonstration (continued) / System / Subsystem Development (continued) / System / Subsystem Demonstration

TRL-7

DEMONSTRATION-SCALE

TESTING

A fully-integrated, fully-operational system / subsystem model, technology, prototype, process, or pilot is demonstrated in an operational environment. Tests are conducted under sustained day-in and day-out operating conditions over a prolonged period (a continuous, steady-state run of 1,000 hours is the industry standard for new technologies, equipment, processes, and plants to instill confidence in investors and funders) investors and funders will most likely employ independent

TRL-7

Federal funding opportunities:

See description of funding opportunities for TRL-6, above. Other funding opportunities may be available, if there is a fit with your technology, concept, process, or approach, from:

U.S. DEPARTMENT OF COMMERCE (DOC)

DOC has one overarching goal: Helping the American Economy Grow. The DOC promotes job creation and economic growth, provides the data necessary to support commerce, oversees ocean and coastal navigation, and fosters innovation by setting standards and conducting foundational research and development. Of its nine bureaus, five provide occasional grant and funding opportunities that can assist with moving commerce-related and oceanic- and atmospheric-related technologies, concepts, and approaches through advanced TRLs. These include:

- Economic Development Administration (EDA)
- National Institute of Standards & Technology (NIST)
- National Oceanic and Atmospheric Administration (NOAA)
- Institute of Standards & Technology (NIST)
- National Telecommunications & Information

คำจำกัดความ TRL ฉบับภาษาอังกฤษ

TRL 7: Final development version of the deliverable demonstrated in operational environment

Development version of the deliverable is near or at the planned operational system. This represents a significant step beyond TRL 6 and requires the demonstration of an actual development version of the deliverable in the operational environment. Examples include integration and demonstration within the next assembly, and advanced concept technology demonstrations of integrated systems such as flight testing.

Notice

- Are the customer and supplier in full agreement that requirements are completely established and in final form? Please provide the final set of requirements.
- Describe the demonstration and how the prototype integrates within the customer's system.

คำจำกัดความ TRL ฉบับภาษาไทย และข้อมูลสนับสนุน (Supporting Information)

TRL 7 : ต้นแบบของผลิตภัณฑ์หรือกระบวนการขั้นสุดท้าย ได้ผ่านการสาธิตและพิสูจน์การใช้งาน ในสภาวะทำงานจริง

คำอธิบาย ตันแบบของผลิตภัณฑ์หรือกระบวนการขั้นสุดท้ายได้ผ่านการสาธิตและพิสูจน์การใช้งาน ในสภาวะทำงานจริง (Operational environment) ซึ่งหมายถึง สภาพแวดล้อมจริงในการทำงาน ของระบบ (ตันแบบ) ที่ไม่สามารถควบคุมปัจจัยที่มีผลเกี่ยวข้องต่อความสำเร็จ/ล้มเหลวในการ ทำงานของระบบได้ (TRL 7 ต้องมีลูกค้าจริง และมีความต้องการที่ชัดเจนของลูกค้า) เอกสาร/หลักฐานเชิงคณภาพ TRL 7 ประกอบด้วย

- □ มาตรฐานการทดสอบ หรือวิธีการทดสอบที่น่าเชื่อถือตาม Standard method ที่มีแหล่งอ้างอิง ตามหลักการหรืองานวิจัยที่เกี่ยวข้อง หากไม่มีแหล่งอ้างอิงควรมีรายละเอียดของหลักการ สมมติฐาน เงื่อนไข และขอบเขตของการทดสอบ
- ผลการทดสอบที่แสดงให้เห็นว่าตันแบบผลิตภัณฑ์หรือกระบวนการผ่านการสาธิตและพิสูจน์ การใช้งานในสภาวะทำงานจริง (Operational environment) เปรียบเทียบกับสมมติฐาน / ข้อกำหนดทางเทคนิค (Specification) ที่ตั้งไว้ และสอดคล้องกับความต้องการประยุกต์ใช้ งานของกลุ่มเป้าหมาย* รวมทั้งสามารถทำซ้ำได้ (Reproducibility) ในสภาวะทำงานจริง (Operational environment)
- □ หลักฐานแสดงการยอมรับของลูกค้า (หรือ Third party ที่นักวิจัยและลูกค้ายอมรับ) เพื่อยืนยัน
 ว่าต้นแบบของผลิตภัณฑ์หรือกระบวนการขั้นสุดท้ายได้ผ่านการสาธิตและพิสูจน์การใช้งานใน
 สภาวะทำงานจริง โดยมีจำนวนการทดสอบและระยะเวลาที่เพียงพอที่สามารถยอมรับได้ทาง
 สถิติ (Statistical confidence)

* กลุ่มเป้าหมาย เช่น ลูกค้าที่สนใจทดสอบต้นแบบ หรือ ลูกค้าที่คาดว่าจะเป็นผู้รับถ่ายทอด เทคโนโลยี โดยลูกค้าควรเป็นผู้กำหนด Requirement หากไม่มีลูกค้า ควรให้ตัวแทนกลุ่มเป้าหมาย ที่น่าเชื่อถือ หรือ Third party ที่นักวิจัยและลูกค้ายอมรับ เป็นผู้กำหนด

ที่มา: คู่มือการประเมินระดับความพร้อมเทคโนโลยี (TRL)สวทช. เวอร์ชั่น 2.2

Federal Funding Opportunities

(continued)

Office of Cybersecurity, Energy Security, and Emergency

See description of financial support under TRL-2 above

See description of financial support under TRL-2 above

Office of Energy Efficiency and Renewable Energy (EERE)

OTHER FEDERAL GOVERNMENT AGENCIES beyond those listed

above and those that participate in the SBIR/STTR program

have grant programs and offer funding that may assist in, or

supplement other grants, in carrying out TRL-6. For a list of

TRL-6

continued

MUST-DO:

- economics, etc. based on TRL-6 results.
- The TRL-6 prototype, process, pilot, model, or approach will be used by an engineering, procurement, and construction

Continued below:

- Update and expand all project specifications, proposals, analyses,

(EPC) or another appropriate firm to develop estimates for construction (or fabrication, development, or manufacturing) for the TRL-7 demonstration-scale prototype, process, model, approach, or plant (at 1/10th commercial scale) and develop relatively accurate (± 30-40 percent) capital / production cost estimates for the full-size, commercial-scale technology, plant, process, product, or approach.

these agencies, see TRL-7 below.

Response (CESER)

NEXT UP: Technology Demonstration (continued) System / Subsystem Development (continued)/ System / Subsystem Demonstration

TRL-7

DEMONSTRATION-SCALE

TESTING

A fully-integrated, fully-operational system / subsystem model, technology, prototype, process, or pilot is demonstrated in an operational environment. Tests are conducted under sustained day-in and day-out operating conditions over a prolonged period (a continuous, steady-state run of 1,000 hours is the industry standard for new technologies, equipment, processes, and plants to instill confidence in investors and funders). Investors and funders will most likely employ independent

TRL-7

Federal funding opportunities:

See description of funding opportunities for TRL-6, above. Other funding opportunities may be available, if there is a fit with your technology, concept, process, or approach, from:

U.S. DEPARTMENT OF COMMERCE (DOC)

DOC has one overarching goal: Helping the American Economy Grow. The DOC promotes job creation and economic growth, provides the data necessary to support commerce, oversees ocean and coastal navigation, and fosters innovation by setting standards and conducting foundational research and development. Of its nine bureaus, five provide occasional grant and funding opportunities that can assist with moving commerce-related and oceanic- and atmospheric-related technologies, concepts, and approaches through advanced TRLs. These include:

- Economic Development Administration (EDA)
- National Institute of Standards & Technology (NIST)
- National Oceanic and Atmospheric Administration (NOAA)
- Institute of Standards & Technology (NIST)
- National Telecommunications & Information

Technology Readiness Levels (TRLs)

continued

engineers to scrutinize and validate the prototype and pilot runs.

SUCCESSFUL COMPLETION:

when it is shown that the fullyintegrated technology, prototype, process, pilot, or approach and all of its components, systems, and subsystems operate as intended.

MUST-DO:

- Documentation is critical in TRL-7, requiring that data be carefully recorded and compiled, including which operations were running when, for how long, and how they performed.
- Flowsheets: heat, material, and energy balances: detailed engineering and design; cost analyses: etc. should be refined to near final form, with a very high level of detail. Investors and funders.
- This, along with information and lessons gained from the operation, design, construction, start up, and operation of the demonstration system, technology, prototype, process, plant, or approach will be used through external EPC resources to develop detailed construction, fabrication, manufacturing, or development estimates for the commercial plant. product, technology, or approach.

Federal Funding Opportunities

(continued)

Administration (NTIA)

U.S. DEPARTMENT OF THE INTERIOR (DOI)

DOI manages the nation's lands. Its current priorities are to maintain and expand conservation stewardship on public lands, sustainably develop the nation's energy and natural resources, modernize the infrastructure overseen by DOI, and promote economic development for Tribal Nations and ensure their sovereignty. Several of DOI's nine bureaus offer grants to support energy innovation, adoption, and deployment, including:

- Bureau of Indian Affairs (BIA)
- Bureau of Land Management (BLM)
- Bureau of Ocean Energy Management (BOEM)
- Bureau of Reclamation (BOR)
- National Park Service (NPS)
- Office of Surface Mining Reclamation and Enforcement
- U.S. Fish and Wildlife Service (FWS)
- U.S. Geological Survey (USGS)
- U.S. DEPARTMENT OF TRANSPORTATION (DOT)

DOT has embarked on an agaressive program to promote sustainability in its policies, operations, investments and research, and ensure that by 2020 not less than 20 percent of electric energy consumed by DOT comes from renewable energy

sources. DOT also has made a commitment to pursue opportunities for the national transportation system that will promote energy and natural resource conservation, decrease emissions of greenhouse gases (GHGs), reduce dependence on fossil fuels, and increase energy efficiency.

One innovative program, the Smart Cities Challenge, selected Columbus, Ohio, in June 2016, to receive \$40 million from DOT to become the first U.S. city to fully integrate innovative technologies - self-driving cars, connected vehicles, and smart sensors - into its transportation network. Another DOT initiative is exploring Renewable Energy Uses in Highway Rights of Way.

NEXT UP: System / Subsystem Development

(continued)

System / Subsystem Demonstration (continued)/

คำจำกัดความ TRL ฉบับภาษาอังกฤษ

คำจำกัดความ TRL ฉบับภาษาไทย และข้อมูลสนับสนุน (Supporting Information)

TRL 8: Actual deliverable qualified through test and demonstration

TRL 8 : เทคโนโลยี/ผลิตภัณฑ์/กระบวนการที่ส่งมอบจริง ได้ผ่านการทดสอบและสาธิ์ต

The technology has been proven to work in its final form under expected conditions. In almost all cases, this TRL represents the end of true system development. Examples include developmental test and evaluation of the actual deliverable in its intended application to validate that it meets design specifications.

คำอธิบาย เทคโนโลยี/ผลิตภัณฑ์/กระบวนการที่ส่งมอบจริง ผ่านการทดสอบคุณภาพการใช้งานตาม มาตรฐานของผู้ใช้/มาตรฐานคุณภาพที่เกี่ยวข้อง (ถ้ามี) / กฎหมายที่เกี่ยวข้อง (ถ้ามี) หรือถูกบูรณา การเข้ากับระบบของลูกค้า/ผู้ใช้งานแล้ว (TRL8 ต้องทำให้ได้คุณภาพตามที่ขายได้ทั่วไป)

Notice

เอกสาร/หลักฐานเชิงคุณภาพ TRL 8 ประกอบด้วย

(ถ้ามี)

How does the customer's approach to product acceptance correlate with agreed-upon requirements?

- ผลทดสอบการใช้งานในสภาวะแวดล้อมการทำงานจริงอย่างต่อเนื่องจนลูกค้ามั่นใจในคุณภาพ และผลการยอมรับว่าสิ่งส่งมอบมีลักษณะที่เป็นไปตามข้อกำหนดหรือความต้องการจริง* ของ กลุ่มเป้าหมาย อยู่ในเกณฑ์ดี ซึ่งเป็นการทดสอบโดยกลุ่มเป้าหมาย เช่น ลูกค้าเป้าหมาย หรือผู้ ที่ต้องการใช้ (*ควรระบุความต้องการอย่างครบถ้วนสมบูรณ์ในเอกสารทางการ เช่น สัญญา ว่าจ้าง หรือ หนังสือแสดงความต้องการใช้งาน)
 ผู่มือสำหรับการผลิต/คู่มือสำหรับการใช้งาน
 ผลการรับรองมาตรฐานหรือข้อกำหนดทางกฎหมายที่จำเป็นสำหรับสิ่งส่งมอบ พร้อมแนบ
- ี รายงานผลการทดสอบ พร้อมปัจจัยสำหรับทดสอบเสถียรภาพของผลิตภัณฑ์ (Shelf life) และ บริการในสภาพจริง อยู่ในเกณฑ์ดี

มาตรฐานกำกับกระบวนการผลิต (หรือมีข้อพิสูจน์ว่ากระบวนการผลิต ได้ผลผลิตเหมือนเดิม)

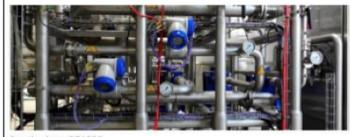
**องค์ประกอบของ Quality report: 1. Product name (or Service name) 2. Build quantity / Period / Site 3. Product version / Associated BOM 4. Process flow 5. Critical process parameters / Specifications 6. Critical process monitoring / Results 7. Critical process yield (for each process step) 8. Product test results 9. Final product yield

Federal Funding Opportunities

(continued)

System Preparation for Launch & Operations

TRL-8


PRECOMMERCIAL DEMONSTRATION: PROOF OF OPERATIONAL TECHNOLOGY, CONCEPT, OR APPROACH

A full- or near-full-size operational system is completed, troubleshot, operated continuously, and qualified through test and demonstration.

Operating conditions are explored to prove the technology, process, or approach within and outside of normal parameters. Deviations from the predictions made during the pilot stage are identified and mitigation plans are developed. Simulations are finalized and scaled up to commercial scale.

Federal funding opportunities:

See TRL-7 above.

Pexels photo 371938

Continuation of TRL-8 description:

SUCCESSFUL COMPLETION: when it is shown that the technology, process,

or approach is proven to work at full or near-full-size commercial scale.

MUST-DO: Using analyses of demonstration-scale operability, final costs will be determined for operations and production, and for construction, fabrication, or manufacturing. Commercial-scale detailed engineering and design will be completed.

THE FINAL STEP: System Launch & Operations

TRL-9

FIRST COMMERCIAL DEPLOYMENT

Application of the technology, process, or approach in its final form. The fully-developed technology, process, or approach is completed, built, operated, and deployed for the first time at full commercial / final scale to provide **proof of**

Federal funding opportunities:

- . U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - Rural Development
 - Section 9003 Biorefinery, Renewable Chemical, and Bioproduct Manufacturing Assistance Loan Guarantee
 - U.S. DEPARTMENT OF DEFENSE (DOD)
 - Defense Advanced Research Projects (DARPA)
 See description of financial support under TRL-1 above
 - Defense Innovation Unit Experimental (DIUx)
 See description of financial support under TRL-2 above
 - Other DOD grant opportunities

คำจำกัดความ TRL ฉบับภาษาอังกฤษ

TRL 9: Operational use of deliverable

Application of the technology in its final form and under mission conditions such as those encountered in operational test and evaluation. In almost all cases, this is the end of the last bug fixing aspects of true system development. Examples include using the deliverable under operational mission conditions. This TRL does not include ongoing or planned product improvement of reusable systems.

Notice

Describe the successful deployment of the product in terms of the customer's volume and frequency of use.

คำจำกัดความ TRL ฉบับภาษาไทย และข้อมูลสนับสนุน (Supporting Information)

TRL 9 : การใช้งานเทคโนโลยี/ผลิตภัณฑ์/กระบวนการอย่างต่อเนื่อง

คำอธิบาย เทคโนโลยี/ผลิตภัณฑ์/กระบวนการถูกนำไปใช้งานจริง และติดตามผลการใช้งาน อย่างต่อเนื่องตามระยะเวลาที่เหมาะสม โดยหากมีข้อบกพร่อง ต้องดำเนินการแก้ไขให้ เรียบร้อย

เอกสาร/หลักฐานเชิงคุณภาพ TRL 9 ประกอบด้วย

- เอกสารสรุปข้อมูลสำคัญของสิ่งส่งมอบ เช่น แนวคิด หลักการ วิธีการวิจัยและพัฒนา ข้อกำหนดทางเทคนิค (Specification) หรือ คุณลักษณะ (Feature) มาตรฐานการ ทดสอบ หรือวิธีการทดสอบที่เชื่อถือได้ ผลการทดสอบเทคโนโลยี/ผลิตภัณฑ์/ กระบวนการก่อนการวางตลาดหรือก่อนใช้อย่างต่อเนื่องในเชิงสาธารณประโยชน์ ที่ สามารถยืนยันข้อกำหนดทางเทคนิค (Specification) ความสามารถในการทำซ้ำ (Reproducibility) และความต้องการ (Requirement) ในการประยุกต์ใช้ เป็นตัน
- ผลิตภัณฑ์มีจำหน่ายในท้องตลาด หรือหลักฐานการนำไปใช้จริงในเชิงพาณิชย์หรือในเชิง สาธารณประโยชน์ เช่น
- จดหมายยืนยันจากผู้รับถ่ายทอดเทคโนโลยีว่าได้มีการถ่ายทอดเทคโนโลยีและนำไปใช้ จริง
- ข้อมูลแสดงยอดขาย หรือจำนวนลูกค้าของผลิตภัณฑ์
- Brochure/Catalog หรือรายการโฆษณา ผลิตภัณฑ์ (ถ้ามี)
- หนังสือขอบคุณจากหน่วยงานที่รับเทคโนโลยี (ถ้ามี)
- □ หลักฐานการเป็นที่ยอมรับ เช่น
- รางวัลต่างๆ ที่ผลิตภัณฑ์ของลูกค้าได้รับ (ถ้ามี)
- ข้อมูลแสดงการยอมรับของผู้บริโภคภายหลังการนำผลิตภัณฑ์ใปใช้อย่างต่อเนื่อง (ถ้ามี)
- ข้อมูลแสดงความต่อเนื่องของยอดขายหรือปริมาณขายหรือจำนวนลูกค้า (ถ้ามี)

ที่มา: คู่มือการประเมินระดับความพร้อมเทคโนโลยี (TRL)สวทช. เวอร์ชั่น 2.2

ที่มา: - Adapted from Sandia National Labs "Measuring the Maturity of a Technology: Guidance on Assigning a TRL", October 2007.

- Adapted from Technology Readiness Levels in the Department of Defense (DoD) http://en.wikipedia.org/wiki/Technology_readiness_level
- Adapted from NASA Small Business Innovation Research & Technology Transfer 2012 Program Solicitations http://sbir.gsfc.nasa.gov/SBIR/sbirsttr2012/solicitation/forms/appendix_B.pdf
- คำจำกัดความ คำอธิบาย และหลักฐาน จากการประชุมหารือผู้เกี่ยวข้องและคณะทำงานพัฒนาระบบบริหารคุณภาพการวิจัย ปังบประมาณ 2563

Federal Funding Opportunities

System Preparation for Launch & Operations

TRL-8

PRECOMMERCIAL DEMONSTRATION: PROOF OF OPERATIONAL TECHNOLOGY, CONCEPT, OR APPROACH

A full- or near-full-size operational system is completed, troubleshot, operated continuously, and qualified through test and demonstration.

Operating conditions are explored to prove the technology, process, or approach within and outside of normal parameters. Deviations from the predictions made during the pilot stage are identified and mitigation plans are developed. Simulations are finalized and scaled up to commercial scale.

Federal funding opportunities:

See TRL-7 above.

Pexels photo 371938

Continuation of TRL-8 description:

SUCCESSFUL COMPLETION: when it is shown that the technology, process,

or approach is proven to work at full or near-full-size commercial scale.

MUST-DO: Using analyses of demonstration-scale operability, final costs will be determined for operations and production, and for construction, fabrication, or manufacturing. Commercial-scale detailed engineering and design will be completed.

THE FINAL STEP: System Launch & Operations

TRL-9

FIRST COMMERCIAL DEPLOYMENT

Application of the technology, process, or approach in its final form. The fully-developed technology, process, or approach is completed, built, operated, and deployed for the first time at full commercial / final scale to provide **proof of**

Federal funding opportunities:

- . U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - Rural Development
 - Section 9003 Biorefinery, Renewable Chemical, and Bioproduct Manufacturing Assistance Loan Guarantee
- U.S. DEPARTMENT OF DEFENSE (DOD)
 - Defense Advanced Research Projects (DARPA)
 See description of financial support under TRL-1 above
 - Defense Innovation Unit Experimental (DIUx)
 See description of financial support under TRL-2 above
 - Other DOD grant opportunities

Technology Readiness Levels (TRLs)

successful operation of the actual system in an operational environment.

TRL-9

continued

SUCCESSFUL COMPLETION:

when deployment in its final form demonstrates that it is operationally, economically, and functionally superior to other existing or similar technologies, processes, or approaches and is replicable, marketable, and financeable.

MUST-DO:

 A full-time engineering staff will continuously monitor operations to verify that they are meeting cost, yield, efficiency, and productivity

Adobe Stock 46792261 Licensed to American Diversified Energy, LLC

The End DEVELOPMENT IS COMPLETE, COMMERCIAL ROLL-OUT

Federal Funding Opportunities

(continued)

See description of financial support under TRL-1 above

- U.S. DEPARTMENT OF ENERGY (DOE)
- Loan Program Office (LPO)
 - Title 17 Loan Guarantee Program
 - Renewable Energy and Energy Efficiency Projects
 - Advanced Fossil Energy Projects
 - Advanced Nuclear Energy Projects
 - Tribal Energy Projects
 - Advanced Technology Vehicle Manufacturing (ATVM)
 Direct Loan Program
- U.S. TREASURY
 - Investment Tax Credit (ITC)

The ITC reduces federal income taxes based on capital investment in innovative and renewable energy projects (measured in dollars). The ITC is earned when the equipment is placed into service.

Production Tax Credit (PTC)

The PTC reduces federal the income taxes of innovative and renewable energy projects based on the electrical output (measured in kilowatt-hours, or kWh) of grid-connected renewable energy facilities.

Modified Accelerated Cost-Recovery System (MACRS)

Or Bonus Depreciation allows businesses and project developers to reduce their federal taxes through a deduction for depreciation when renewable energy equipment or facilities producing renewable energy are placed into service. With passage of the 2017 Tax Cuts and Jobs Act, the first-year depreciation allowance was increased from 50 percent to 100 percent. Several other types technologies and properties that incorporate innovative concepts also are now eligible for MARCS program bonus depreciation.

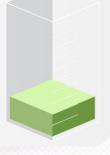
Federal funding opportunities:

- U.S. DEPARTMENT OF AGRICULTURE (USDA)
 - Rural Development Business Programs
 - Business & Industry (B&I) Loan Guarantees
 - Value Added Producer Grants

Environment/Test Conditions + Sample size & Test method

Sample size

จำนวนครั้งของ การทดสอบ


ความเชื่อมั่นทางสถิติ ของผลการทดสอบ

(ทดสอบที่ครั้งก็ได้ performance ของ Spec เหมือนเดิม)

Spec คือ ทนความร้อนได้ 40 องศา

ผลการทดสอบแต่ละชิ้นใน 20 ครั้ง สามารถทนความร้อนได้ 40 องศา

TRL 5: Relevant

Environment (Key elements)

Sample size

จำนวนครั้งของ การทดสอบ

ความเชื่อมั่นทางสถีตี ของผลการทดสอบ

(กดสอบที่ครั้งก็ได้ performance ของ Spec เหมือนเดิม)

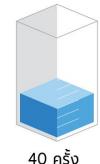
Spec คือ ทนความร้อนได้ 50 องศา

ผลการทดสอบแต่ละชิ้นใน 20 ครั้ง สามารถทนความร้อนได้ 50 องศา

้ต้นแบบของผลิตภัณฑ์หรือกระบวนการที่พร้อมเป็นสิ่งส่งมอบ ได้ผ่านการสาธิตและพิสูจน์การใช้งานในสภาวะแวดล้อมที่เกี่ยวข้องกับการทำงานจริง

ระบุสภาวะแวดล้อมที่เกี่ยวข้อง

สภาพแวดล้อมทางกายภาพที่ควบคุมให้เหมือนสภาพแวดล้อมจริง (Operational Environment) อาทิ เครื่องจักร อุปกรณ์ ช่วง (Range between... and...) ของอุณหภูมิ ความชื้น การสิ้นเปลือง พลังงาน ความสั่นสะเทือน ระดับเสียงรบกวน และการคลายสิ่ง ที่เป็นภัยของสิ่งแวดล้อม (Emission)


Test Method

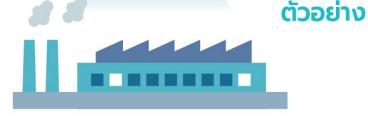
วิธีการทดสอบ เพื่อให้ได้ผลการทดสอบตาม Specification ที่กำหนด

Test Reports

- แสดงหลักฐานให้เห็นว่าต้นแบบฯ ผ่านการพิสูจน์การใช้งานในสภาวะ แวดล้อมที่เกี่ยวข้อง โดยเปรียบเทียบกับข้อกำหนดทางเทคนิค (Specification) ที่ตั้งไว้
- แสดงหลักฐานว่าสามารถทำซ้ำได้ (Reproducibility)

จำนวนครั้ง ของการทดสอบ

Reproducibility


กรรมวิธีเหมือนกัน 100% ในการผลิต

ความเชื่อมั่น ทางสถิติ

Spec คือ ทนความร้อน ได้ 60 องศา

ผลการทดสอบแต่ละชิ้น ทนความร้อนได้ 60 องศา

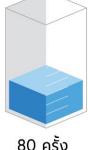
Customer Acceptance

้ต้นแบบของผลิตภัณฑ์หรือกระบวนการขั้นสุดท้าย ได้ผ่านการสาธิตและพิสูจน์การใช้งานในสภาวะทำงานจริง

ระบุสภาวะแวดล้อมจริง (Operational Environment)

สภาพแวดล้อมที่ไม่สามารถควบคุมปัจจัยที่มีผลเกี่ยวข้องต่อความ สำเร็จ/ล้มเหลวในการทำงานของระบบได้

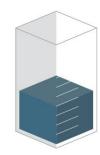
TRL7 = TRL6+หลาย parameters ที่ไม่ได้ควบคุมตาม สภาพแวดล้อมจริงที่ทดสอบ


Test Method

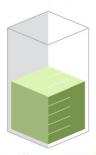
วิธีการทดสอบ เพื่อให้ได้ผลการทดสอบตาม Specification ที่กำหนด มีจำนวนการทดสอบและระยะเวลาที่เพียงพอที่สามารถยอมรับได้ ทางสถิติ (Statistical Confidence) เช่น การทำงานต่อเนื่อง 1,000 ชั่วโมง¹ ถือเป็นมาตรฐานที่อุตสาหกรรมยอมรับ สำหรับเทคโนโลยี/อุปกรณ์หรือกระบวนการใหม่ ทั้งนี้ หากเป็นการลงทุนที่มีความเสี่ยงสูง ระยะเวลาการ ทดสอบอย์ที่ประมาณ 12 เดือน

Test Reports

- แสดงหลักฐานให้เห็นว่าต้นแบบฯ ผ่านการพิสูจน์การใช้งานในสภาวะแวดล้อมที่เกี่ยวข้อง โดยเปรียบเทียบกับข้อกำหนดทางเทคนิค (Specification) ที่ตั้งไว้
- แสดงหลักฐานว่าสามารถทำซ้ำได้ (Reproducibility)
- Flowsheets: heat, material, and energy balances; detailed engineering and design; cost analyses; etc.


ตัวอย่าง

จำนวนครั้ง


ของการทดสอน

Reproducibility

กรรมวิธีเหมือนกัน 100% ในการผลิต

ความเชื่อมั่น ทางสถิติ

Spec คือ ทนความร้อน ได้ 60 องศา

ผลการทดสอบแต่ละชิ้น ทนความร้อนได้ 60 องศา

Customer Acceptance

Automatic hospital bed

System prototype demonstration in an operational environment

Could be the same prototype as TRL 6 below but tested in an actual hospital environment for an extended period of time.

Technology demonstration in a relevant environment

Pototype that resembles final product in both function and form

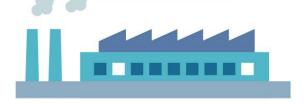
Technology validation in a relevant environment

Heavy, clumsy, full scale prototype that proves that the cincept will work tehnically. Not made to resemble a final product in other aspects than function.

เทคโนโลยี/ผลิตภัณฑ์/กระบวนการที่ส่งมอบจริง ได้ผ่านการทดสอบและสาธิต

Pre-commercial Demonstration

เทคโนโลยี/ผลิตภัณฑ์/กระบวนการที่ส่งมอบ ถูกบูรณาการเข้ากับ ระบบของลูกค้า/ผู้ใช้งานแล้ว


*ควรมีเอกชน เป็นผู้ร่วมอย่างชัดเจน เพื่อให้เกิดการทดสอบ ตลาด และยื่นเอกสารต่อหน่วยรับรองมาตรฐานที่เกี่ยวข้อง ให้ผลิตภัณฑ์สามารถผลิตในระดับ Mass Production ได้

Relevant Standards/ Customer Standard

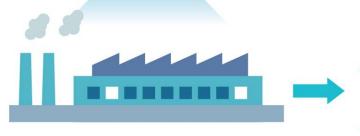
ผลการรับรองมาตรฐานหรือข้อกำหนดทางกฎหมายที่จำเป็นสำหรับ สิ่งส่งมอบ พร้อมแนบมาตรฐานกำกับกระบวนการผลิต (หรือมีข้อ พิสูจน์ว่ากระบวนการผลิต ได้ผลผลิตเหมือนเดิม)

Test Reports

- ในระดับ TRL8 นี้ สินค้าถูกผลิตเหมือนจริงแล้วส่งให้หน่วยงาน ภายนอกทดสอบมาตรฐานที่เกี่ยวข้อง
- รายงานผลการทดสอบ พร้อมปัจจัยสำหรับทดสอบเสถียรภาพของ ผลิตภัณฑ์ (Shelf life) และบริการในสภาพจริง อยู่ในเกณฑ์ดี
- คู่มือการผลิต/คู่มือการใช้งาน

System Preparation for Launch

Customer Acceptance


การใช้งานเทคโนโลยี/ผลิตภัณฑ์/กระบวนการอย่างต่อเนื่อง

Production operated over the full range of expected conditions in industrial scale

- ผลิตภัณฑ์มีคุณภาพตรงตามความต้องการของตลาด
- เทคโนโลยี/ผลิตภัณฑ์/กระบวนการถูกนำไปใช้งานจริง และติดตาม ผลการใช้งานอย่างต่อเนื่องตามระยะเวลาที่เหมาะสม โดยหากมีข้อ บกพร่อง ต้องดำเนินการแก้ไขให้เรียบร้อย

ผลิตภัณฑ์มีจำหน่ายในท้องตลาด/มีหลักฐานการ นำไปใช้จริงในเชิงพาณิชย์หรือในเชิงสาธารณประโยชน์

- จดหมาย/เอกสารยืนยันจากผู้รับถ่ายทอดเทคโนโลยีว่าผลิตภัณฑ์/ กระบวนการมีการขายแล้วอย่างต่อเนื่องในตลาดหรือมีการใช้งาน ในเชิงสาธารณประโยชน์ อย่างต่อเนื่องตามระยะเวลาที่เหมาะสม ในแต่ละผลิตภัณฑ์
- ข้อมูลแสดงความต่อเนื่องของยอดขายหรือปริมาณขายหรือจำนวน ลูกค้า ไม่มีการร้องเรียนอย่างน้อย 12 เดือน

Customer Acceptance

- ข้อมูลแสดงการยอมรับของผู้บริโภคภายหลังการนำผลิตภัณฑ์ไปใช้อย่าง ต่อเนื่อง /การประเมิน Negative Lists หรือ ข้อร้องเรียนจากลูกค้าเกี่ยวกับ Performance หรือความปลอดภัยของผลิตภัณฑ์/กระบวนการ
- Brochure/ Catalogue หรือรายการโฆษณา ผลิตภัณฑ์ (ถ้ามี)
- รางวัลต่างๆ ที่ผลิตภัณฑ์ของลูกค้าได้รับ (ถ้ามี)

TRL for MA Partitioning Processes (1/2)

			Full-scale:	1-10 kg-MA/day		
			Engineering scale:	0.1-10 kg-MA/day		
TRL	Category		Laboratory-scale:	1-100 g-MA/day		
9	Proof of	Actual facili	Bench-scale:	mg-10 g-MA	ations	
:	Performance	:				
6			nit operations testing uipment design valid	g with <i>actual spent fue</i> lated	<u>əl</u>	
5	Proof of Principle	Engineering scale unit operations testing with actual spent fuel Simulation models validated				
4		<u>Engineering scale</u> unit operations testing with <u>simulated materials</u> Separations chemistry models developed				
3	Concept Development	<u>Laboratory-scale</u> batch testing with <u>simulated materials</u> Preliminary testing of equipment design concepts				
2		Bench-scale batch testing with simulated materials Preliminary selection of process equipment				
1		Basic princi	ples observed and f	ormulated		

ที่มา:

K. Minato, Y. Morita, K. Tsujimoto, S. Koyama M. Kurata, T. InoueK. Ikeda. Technology Readiness Levels for Partitioning and Transmutation of Minor Actinides in Japan, 2010

Example 1: RENEWABLE ALTERNATIVE FUELS – FINAL GUIDANCE DOCUMENT

Once readiness level 3 has been achieved, the applied technological concept has been defined. This means:

- The concept is tested through laboratory scale;
- Parameters characterizing the fuel or the technology are measured/calculated;
- First proof-of-concept prototype is ready and preliminarily tested;
- Verification of the proof of concept through consolidated simulation tools and cross-validation of the numerical models thanks to literature data (if applicable) is done.
- Dualitative assessment of advantages (e.g. environmental, technological, economical) of the new concept, fuel or system is demon strated.

Once readiness level 2 is achieved, the applied technological concept has been defined. This means:

TRL2

Technical analysis of the concept is investigated;

Interactions between components are qualitatively assessed;

Qualitative assessment of advantages (e.g. environmental, technological, economical) of the new concept, fuel or system is done; Proof of concept approach and preliminary technical specifications (e.g. technologies, compositions, limitations) is defined.

Once readiness level 1 is achieved, the scientific concept is observed and documented. This means:

- Identification of possible materials, components and systems and relevant risks and hazards;
- Preliminary concept design
- Preliminary evaluation of the potential benefits and technological gaps of the new concept over the existing ones.

TRL1

Source: Technology readiness level: Guidance principles for renewable energy technologies: final report, European Commission, 2017

Example 1: RENEWABLE ALTERNATIVE FUELS – FINAL GUIDANCE DOCUMENT

Once readiness level 5 has been achieved, the technology is ready to move forward to pilot scale. This means:

- A large scale laboratory prototype is realized and tested in intended working environment;
- The manufacturing process parameters are defined;
- Information to perform environmental and socio-economic sustainability assessment is available;
- Life cycle analysis could be done;

Once readiness level 4 has been achieved, the applied technological concept is experimented and validated. This means:

- The fuel or the process is tested and validated at laboratory scale;
- The prototype characteristics are defined;
- The prototype can achieve repeatable/stable performance;
- Integration with complementing subsystems is done;
- Quantitative assessment of advantages (e.g. environmental, technological, economical) of the new concept, fuel or system is demonstrated;
- The hazards associated to the technology should be identified.

TRL

Checkpoints

Example 1: RENEWABLE ALTERNATIVE FUELS – FINAL GUIDANCE DOCUMENT

Once readiness level 7 is achieved, the technology concept is validated at demonstration scale. This means:

- System/technology demonstrated in field under different working conditions;
- Manufacturing approach is demonstrated;
- ▶ Life cycle assessment and life cycle costing are re-evaluated;
- Regulatory aspects are analysed and followed.

Once readiness level 6 is achieved, the technology is enlarged to pilot scale. This means:

- The technology is demonstrated in working environment conditions;
- Fuel characteristics are stable;
- The process is safe and reliable;
- Realization of a pilot scale prototype that could be integrated with other subsystems and fine-tuned on field;
- Measurement of pilot scale prototype performance in different and relevant extreme conditions;
- Performance matches the KPIs;
- Social acceptance is evaluated.

TRL6

Checkpoints

Example 1: RENEWABLE ALTERNATIVE FUELS - FINAL GUIDANCE DOCUMENT

TRLS

Readiness level 9 is achieved, once:

- Technology available for the market;
- Full rate production readiness;
- Business plan is available.

Readiness level 8 is achieved, once:

- Technology is proven in its final form and under expected conditions;
- Production is potentially commercially viable;
- Compliance with legal obligations of the technology is in place

Example 2: DMTC (Defence Material Technology Centre) was established in 2008 under the Australian Government's Defence Future Capability Technology Centre Program.

Example Case Studies

Vehicle Bumper

Technology: Anew light weight bumper bar for a new defence land vehicle (e.g. Hawei).

TRL1	Study of possible materials to reduce weight for bumpers		
TRL2	Established concept for bumper design		
TRL3	Bumper CAD model Tested with FEA		
TRL4	CAD model validated with materials testing in laboratory		
TRL5	Weight, mounting and corrosion control consideration for vehicle bumper are integrated into design		
TRL6	Prototype bumper manufactured and tested		
TRL7	Bumper tested on vehicle		
TRL8	Bumper certified/qualified for production		
TRL9	Bumper a component on defence vehicle		

Robotic welding cell

Technology: A robotic welding cell that utilises automated offline programming to determine welding paths and then applied to the bushmaster welding operationas at Thales

TRL1	Study of state of autonomous welding processes
TRL2	Established concept for autonomous welding system incorporating automated offline programming, identifying technology gaps
TRL3	Development of algorithms for robot to map three dimensional geometrie
TRL4	Laboratory demonstration of robot mapping dimensional geometries and identifying joints
TRL5	Demonstration of autonomous robotic mapping of geometries then welding of joints

representative of final application

Autonomous robotic welding cell at end user site demonstrates new

TRL8 technology

Autonomous robotic welding defined at standard operating procedure for specific welding applications

Autonomous robotic welding cell welds joints with geometries

Autonomous robotic welding routinely used with production of Bushmaster vehicles